
CS-130A Hashing.1'

&

$

%

Hashing

• Table (hd) with D (or TableSize) entries or b (buckets).

• Hash function f(x) maps keys to {0, 1, 2, . . . , D − 1}, i.e., the

universe is partitioned into D regions by the hash function.

• In the ideal situation the objects to be represented are mapped

(via the hash function) to different positions in the hash table.

• Therefore, initialization takes O(D), and insert, delete and

membership can be done in O(1) time (assuming the ideal

situation).

• Most common hash function f(k) = k%D. f(k) gives the

home bucket.

grouper
Line

CS-130A Hashing.2'

&

$

%

Linear Open Addressing Hashing

• Example: D = 11.

• f(80) → 3, f(40) → 7, f(65) → 10.

0 1 2 3 4 5 6 7 8 9 10

80 40 65

• If we try to insert 58 which maps to 3 also,

there is a collision.

• An overflow occurs when there is no more

space for the element.

• Where do we store it? Next available space

(circular) [linear open addressing].

• in this case is inserted in position 4.

0 1 2 3 4 5 6 7 8 9 10

80 58 40 65

grouper
Line

grouper
Line

grouper
Rectangle

grouper
Rectangle

CS-130A Hashing.3'

&

$

%

• Insert 24 (maps to 2) does not cause a

collision.

0 1 2 3 4 5 6 7 8 9 10

24 80 58 40 65

• Insert 35 (maps to 2) causes a collision. So it

ends up in position 5.

0 1 2 3 4 5 6 7 8 9 10

24 80 58 35 40 65

• Insert 98 (maps to 10) causes a collision and

ends up in position 0.

0 1 2 3 4 5 6 7 8 9 10

98 24 80 58 35 40 65

grouper
Line

grouper
Line

grouper
Line

grouper
Line

grouper
Rectangle

grouper
Rectangle

grouper
Rectangle

CS-130A Hashing.4'

&

$

%

Search for x

• Begin at the home bucket till

– You find the element (x is in the table), or

– An empty spot (x is not in the table), or

– Back at the home bucket (x is not in the

table)

CS-130A Hashing.5'

&

$

%

Deletion

• Just erase the element will not work! (Like

delete 80)

• Use a NeverUsed bit (and modify search and

insert)

Performance (No Proofs for this part Discussed)

• Number of buckets is b = D.

• α = n/b is the load factor.

• Avg. Num. of buckets examined during

unsuccessful searches Un ∼ 1
2 (1 + 1

(1−α)2)

• Avg. Num. of buckets examined during

successful searches Sn ∼ 1
2 (1 + 1

1−α
)

• α = 0.5 the Un is 2.5 and Sn is 1.5.

• α = 0.9 the Un is 50.5 and Sn is 5.5.

D should be a prime or have no prime factors less

than 20.

grouper
Line

grouper
Line

grouper
Line

CS-130A Hashing.6'

&

$

%

Random Proving: Defn. & Analysis

• Overflow: Next bucket is found at random.

• Actually pseudo-random in order to be able

to reproduce results.

Theorem 10.1 [Sa, Origin: Probability Theory]:

Let p be the probability that certain event occurs.

The expected number of independent trials

needed for that event to occur is 1/p.

Coin flips (for H or T): 2, and

Die throw (for number in 1 - 6): 6.

• α = n/b is the load factor.

• Probability of an occupied bucket is α.

• Probability that a bucket is empty is 1 − α.

• Unsuccessful search: Looks for an empty

bucket. Using independent trials the expected

number of buckets examined is:

Un ≈ 1
1−α

grouper
Line

CS-130A Hashing.7'

&

$

%

Random Proving: Sn

• Eqn for Sn is derived from Un.

• Elements in table are 1, 2, . . . , n (in the order

inserted).

• When element i is inserted an unsuccessful

search is performed and the element is

inserted.

• From above, the buckets searched were 1
1− i−1

b

.

• Assuming the each element in the table is

searched with equal probability, we know that

... (Next Slide)

CS-130A Hashing.8'

&

$

%

Random Proving: Sn cont’

Sn ≈
1

n

n∑
i=1

1

1 − i−1
b

=
1

n

n−1∑
i=0

1

1 − i
b

≈
1

n

∫ n−1

i=0

1

1 − i
b

di

≈
1

n

∫ n

i=0

1

1 − i
b

di

= −
b

n
ln(1 −

i

b
)]n0

= −
1

α
ln(1 − α)

grouper
Line

grouper
Line

CS-130A Hashing.9'

&

$

%

Linear v.s. Random Proving

• When α = 0.9 Un = 50.5 with linear proving,

but only 10 when using random proving.

• The important thing is run-time rather than

number of buckets searched. It take more

time to generate a random number than to

search a few buckets.

• The cache effect also comes to play in random

proving as the places being searched may

cause “caching and paging faults” (section 4.5

[Sa]).

grouper
Text-Box
linear proving - alpha = 0.5 --- U_n = 2.5 -- S_n = 1.5
 alpha = 0.9 --- U_n = 50.5 -- S_n = 5.5

random proving -- alpha =0.5 --- U_n = 2.0 -- S_n = 1.386
 -- alpha = 0.9 --- U_n = 10.0 -- S_n = 2.55

CS-130A Hashing.10'

&

$

%

Hashing with Chaining

• Bucket has a linked list of the keys that

mapped to that bucket (inc. order)

0 -> 11 -> 33 -> 55 -> 66

1

2

3 -> 36 -> 69

4

5 -> 16 -> 49 -> 82

• plus infinity object at the end of the list

simplifies the code (Actually only one object).

0 -> 11 -> 33 -> 55 -> 66 -> BIG

1 -> BIG

2 -> BIG

3 -> 36 -> 69 -> BIG

4 -> BIG

5 -> 16 -> 49 -> 82 -> BIG

CS-130A Hashing.11'

&

$

%

Performance (No Proofs Discussed (See 10.5.4 in

[Sa])

• α = n/D is the load factor.

• Avg. Num. of nodes examined during

successful searches Sn ∼ 1 + α
2

• Avg. Num. of nodes examined during

unsuccessful searches Un ≤ α, α < 1

Un ≈ α(α+3)
2(α+1) , α ≥ 1

grouper
Line

grouper
Line

CS-130A Hashing.12'

&

$

%

Text Compression: LZW

• Compress string aaabbbbbbaabaaba, with∑
= {a, b}

• “a” is assigned code 0 and “b” is assigned

code 1.

• Mapping is stored in table

0 1

a b

• Beginning with the above dictionary, find the

longest prefix, p, of the un-encoded part of

the input file that is in the dictionary and

output its code.

• If there is a next character c, in the input file

then pc is assigned the next code and inserted

in the dictionary.

grouper
Rectangle

grouper
Line

grouper
Line

grouper
Line

grouper
Line

grouper
Line

CS-130A Hashing.13'

&

$

%

Example

0 1

a b

a aabbbbbbaabaaba

we output 0 and add aa with code 2

0 1 2

a b aa

aa bbbbbbaabaaba

we output 2 and add aab with code 3

0 1 2 3

a b aa aab

b bbbbbaabaaba

we output 1 and add bb with code 4

0 1 2 3 4

a b aa aab bb

grouper
Rectangle

grouper
Line

grouper
Rectangle

grouper
Line

grouper
Rectangle

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Oval

grouper
Oval

CS-130A Hashing.14'

&

$

%

bb bbbaabaaba

we output 4 and add bbb with code 5

0 1 2 3 4 5

a b aa aab bb bbb

bbb aabaaba

we output 5 and add bbba with code 6

0 1 2 3 4 5 6

a b aa aab bb bbb bbba

aab aaba

we output 3 and add aaba with code 7

0 1 2 3 4 5 6 7

a b aa aab bb bbb bbba aaba

aaba

we output 7.

0 1 2 3 4 5 6 7

a b aa aab bb bbb bbba aaba

grouper
Line

grouper
Rectangle

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Oval

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Oval

grouper
Line

grouper
Rectangle

CS-130A Hashing.15'

&

$

%

Actual Dictionary

0 1 2 3 4 5 6 7

a b 0a 2b 1b 4b 5a 3a

a b aa aab bb bbb bbba aaba <-- extra line

• Output is 0214537

Representation of Code Table

• Codes are 4096

• Access via code number plus symbol

• Use hash table with chaining (D = 4099)

• Can use tries too (reqs. more space).

• Code table is not transmitted to

decompressor, because it can be reconstructed

from the output of the compressor.

grouper
Rectangle

grouper
Line

grouper
Line

grouper
Text-Box
12 bits long

grouper
Line

grouper
Line

CS-130A Hashing.16'

&

$

%

Decompression

0 214537

0 1

a b

The 0 outputs a

The code 2 is 0*

2 14537

The 2 implies that the fc (first character) is a

So code 2 is 0a and added to the table

0 1 2

a b 0a

a b aa <-- extra line

The 2 outputs aa

The code 3 is 2*

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Line

grouper
Rectangle

grouper
Oval

CS-130A Hashing.17'

&

$

%

1 4537

The 1 implies that the fc is b

So code 3 is 2b and added to the table

0 1 2 3

a b 0a 2b

a b aa aab <-- extra line

The 1 outputs b

The code 4 is 1*

4 537

The 4 implies that the fc is b

So code 4 is 1b and added to the table

0 1 2 3 4

a b 0a 2b 1b

a b aa aab bb <-- extra line

The 4 outputs bb

The code 5 is 4*

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Line

grouper
Rectangle

grouper
Oval

CS-130A Hashing.18'

&

$

%

5 37

The 5 implies that the fc is b

So code 5 is 4b and added to the table

0 1 2 3 4 5

a b 0a 2b 1b 4b

a b aa aab bb bbb <-- extra line

The 5 outputs bbb

The code 6 is 5*

3 7

The 3 implies that the fc is a

So code 6 is 5a and added to the table

0 1 2 3 4 5 6

a b 0a 2b 1b 4b 5a

a b aa aab bb bbb bbba <-- extra line

The 3 outputs aab

The code 7 is 3*

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Line

grouper
Rectangle

grouper
Oval

CS-130A Hashing.19'

&

$

%

7

The 7 implies that the fc is a

So code 7 is 3a and added to the table

0 1 2 3 4 5 6 7

a b 0a 2b 1b 4b 5a 3a

a b aa aab bb bbb bbba aaba <-- extra line

The 7 outputs aaba

The code 8 is 7*

• Output is aaabbbbbbaabaaba

Representation of Code Table

• Codes are 4096

• Access via code number

• Use 1D array of size 4096

grouper
Line

grouper
Rectangle

grouper
Oval

grouper
Line

grouper
Line

CS-130A Hashing.20'

&

$

%

Universal Hashing

• If the hash function is fixed in advance, then

one can choose n keys so that all keys hash

into the same place. So worst case may occur.

• Universal Hashing: Choose hash function

randomly (independently of the hash keys

being stored). Good performance on average.

• Ranodomized algorithms behave differently in

each execution, even when the input is the

same.

• Probability of a bad hash function is low.

grouper
Line

grouper
Line

grouper
Line

grouper
Line

CS-130A Hashing.21'

&

$

%

• H: Finite collection of hash functions that

map a given universe U of keys into the range

{0, 1, . . . , m − 1}.

• H is said to be universal if for each pair of

distinct keys x, y ∈ U , the number of hash

functions h ∈ H for which h(x) = h(y) is

precisely | H | /m. In other words, with a

hash function randomly chosen from H, the

chance of a collision between x and y when

x 6= y is exactly 1/m, which is exactly the

chance of a collision if h(x) and h(y) are

randomly chosen from the set

{0, 1, . . . , m − 1}.

grouper
Line

grouper
Line

CS-130A Hashing.22'

&

$

%

Expected Number of Collisions

• Theorem: If h is chosen from a universal

collection of hash functions to map n keys to

a table with m entries (n ≤ m), the expected

number of collisions involving a key x is less

than one.

• Proof: Given y and z, let Cyz be a random

variable equal to 1 if h(y) = h(z) and 0

otherwise.

• By definition (of universal hashing)

E[Cyz] = 1/m.

• Given x, let Cx be the total number of

collisions involving key x in hash table T of

size m with n keys.

• E[Cx] =
∑

y∈T,y 6=x E[Cxy] = (n − 1)/m

• Since n ≤ m, we know E[Cx] < 1.

grouper
Line

grouper
Line

grouper
Line

grouper
Line

grouper
Line

grouper
Line

CS-130A Hashing.23'

&

$

%

Universal class of hash Functions

• m is prime

• Decompose key x into r + 1 bytes

(x = [x0, x1, . . . , xr] such that the maximum

value of a byte is less than m.

• Let a = [a0, a1, . . . , ar] denote a sequence of

r + 1 elements chosen randomly from the set

{0, 1, . . . , m − 1}.

• The hash function ha ∈ H is defined as

ha(x) =
∑r

i=0 aixi mod m.

• H= ∪a{ha}. Which has mr+1 members.

grouper
Rectangle

grouper
Line

grouper
Line

grouper
Line

grouper
Freehand

grouper
Line

CS-130A Hashing.24'

&

$

%

H just Defn is Universal

• H just defined is Universal.

• Let x and y be two distinct keys.

• Assume that x0 6= y0. (Similar argument can

be made in other cases).

• For fixed values of a1, a2, . . . , ar, there is

exactly one value of a0 that satisfies

h(x) = h(y) since a0 is the solution of

a0(x0 − y0) = −
∑r

i=1 ai(xi − yi)(mod m).

Because m is a prime.

• Therfore each pair of keys x and y collide for

exactly mr values of a.

• Since there are mr+1 possible sequences a,

the probability of collision is exactly

mr/mr+1 = 1/m.

• Therefore H is universal.

grouper
Text-Box
Derived from
h(x)=h(y)

grouper
Freehand

grouper
Line

grouper
Line

grouper
Rectangle

CS-130A Hashing.25'

&

$

%

m is a prime

Suppose that x_0 > y_0 (other case is similar)

Let m = 11 and x_0-y_0 is 5

a_0 0 1 2 3 4 5 6 7 8 9 10

a_0*(x_0-y_0) 0 5 10 15 20 25 30 35 40 45 50

mod 11 0 5 10 4 9 3 8 2 7 1 6

So probability of a confict (previous theorem) is

1/m = 1/11.

grouper
Rectangle

grouper
Line

grouper
Line

CS-130A Hashing.26'

&

$

%

m is NOT a prime

However if m = 10 and x_0-y_0 is 5

a_0 0 1 2 3 4 5 6 7 8 9

a_0*(x_0-y_0) 0 5 10 15 20 25 30 35 40 45

mod 10 0 5 0 5 0 5 0 5 0 5

So probability of a confict (previous theorem) is NOT

1/m = 1/10. It is 1/2.

That is why m is selected as a prime.

grouper
Rectangle

grouper
Line

grouper
Line

grouper
Line

grouper
Line

grouper
Oval

