CS-130A Heaps.1

/

‘ Max Heaps I

e Fach node stores one value, but the values
may be repeated (i.e., it is a multiset, rather

than a set).

e Complete binary tree (All possible nodes at
each level are present except possibly for the
last level. All the missing nodes in the last
level, if any, are located to the right of the
nodes that are present.)

e The value stored at node v is at least as large
as the values stored at its children nodes.

Heap Not A Heap Not A Heap

(59 (59 (59
() (@) ON® (35) (@)
(9 @@ (© @@ © @ @

_ /

CS-130A Heaps.2

‘Representation Without Pointers'

1 FLOOR(i.2)

VAN |

2 3

YAYAN i
ANANANA 2./\

8 9 10111213 14 15 2i+1

1]2]3]a]5]|6]7]|8]9]10[11]12)13]14]15|

template<class T>
class MaxHeap {
public:
MaxHeap(int MaxHeapSize = 10);
“MaxHeap() {delete [] heap;}
private:
int CurrentSize, MaxSize;
T *heap; // element array };
template<class T>
MaxHeap<T>: :MaxHeap(int MaxHeapSize)
{ MaxSize = MaxHeapSize;

heap = new T[MaxSize+1];

CurrentSize = 0; 1}

_ /

CS-130A Heaps.3

Height of Heap with n nodes'

e Full Binary Tree (no missing nodes).

— Number of nodes at level 1 is 22, at level 2

is 21, at level 3 is 22, ..., at level h is 2" 1.
— Therefore, n = Z?:_()l 2!

— So,n=2"—-1 and n+ 1 = 2",
— So, h =loga(n + 1).
— Or his O(log n).
e Not Full Binary Tree (missing nodes).
— Fill it up. Number of nodes is m < 2n.
— Therefore, h = logs(m + 1) < log2(2n + 1).
— Or his O(log n).

_ /

CS-130A Heaps.4

4 N

‘ Insert z '

e Assign x to the next available position.

e If = is greater than the value of its parent

then swap them.

e repeat the above operation till you reach the

root or it does not hold.

CS-130A Heaps.5

/ Example for Insert' \

EMPTY HEAP Insert 14

—_—

Insert 20 Move Up
—_—
Insert 2
—_—

/
\)

CS-130A Heaps.6

4 N

Example for Insert'

Insert 10
OO > OO
OSIRONNNEE (&) D
—_—

(=) (2)
(=) @ () @
OBNOIO) OBNOIO)

CS-130A

Heaps.7

/

_

‘ General Idea.

Just move them down (instead of swap) and store

x in the appropriate place.

CS-130A Heaps.8

4 N

template<class T>
MaxHeap<T>& MaxHeap<T>::Insert(const T& x)

{// Insert x into the max heap.
if (CurrentSize == MaxSize)

throw NoMem(); // no space

// find place for x
// i starts at new leaf and moves up tree
int 1 = ++CurrentSize;
while (i != 1 && x > heap[i/2]) {
// cannot put x in heap[i]
heap[i] = heapli/2]; // move down
i /= 2;} // move to parent

heap[i] = x;
+

Time Complexity is O(log n).

_ /

CS-130A Heaps.9

4 N

‘ Deletion '

e Copy the value in the root and that is what

will be returned.
e Move the last element to the root.

e If one of its children has a larger value, then

move it to the child with largest value.

e Repeat the abve until you reach a leaf or the

above condition does not hold.

CS-130A

Heaps.10

/

e @ DeleteMax
e
e e DeleteMax
—_—
@ e Move Down

@ @ Move Down
e e Move Down

~

CS-130A Heaps.11

4 N

CS-130A Heaps.12

~

template<class T>
MaxHeap<T>& MaxHeap<T>::DeleteMax(T& x)
{ if (CurrentSize == 0)
throw OutOfBounds(); // empty
x = heap[1]; // max element
T y = heap[CurrentSize--]; // last element
int i = 1, // current node of heap
ci = 2; // child of i
while (ci <= CurrentSize) {
if (ci < CurrentSize &&
heap[ci] < heaplci+l]) ci++;
// can we put y in heapl[cil?
if (y >= heaplcil) break; // yes
// no
heap[i] = heapl[ci]; // move child up
i = ci; // move down a level
ci *x= 2; }
heap[i] = y;
+

Time Complexity is O(log n).

_ /

CS-130A Heaps.13

/ n Sequential Inserts' \

e By the above procedure it takes O(n log n)

time (actually 2 too).

o New procedure takes O(n) Time.

Make it a HEAP

Time Complexity

At level j there are 27~ ! vertices and making that
subtree a heap takes h — j operations (assume

complete tree).

T(n) = izﬂ'l(h)
_ " /

CS-130A Heaps.14

4 N

CS-130A Heaps.15

//;;mplate<class T> *\\\

void MaxHeap<T>::Initialize(T al[l], int size,

int ArraySize€)
{ delete [] heap;
heap = a;
CurrentSize = size;
MaxSize = ArraySize;
for (int i = CurrentSize/2; i >= 1; i-—-)
T y = heaplil; // root of subtree
int ci = 2%i; // parent of c is target
// location for y
while (ci <= CurrentSize) {
// heaplci] should be larger sibling
if (ci < CurrentSize &&
heap[ci] < heaplci+l]) ci++;
// can we put y in heapl[cil?
if (y >= heaplci]) break; // yes
// no
heap[ci/2] = heaplcil; // move chilld up

ci *= 2; // move down a level }

\\\g heap[ci/2] = y;} } 4///

CS-130A

Heaps.16

/

‘ Other Operations I

Decrease Value O(logn)).
Increase Value O(logn)).

Delete element (if you know its position)

O(logn)).

Delete element (if you do NOT know its
position) O(n).

~

CS-130A Heaps.17

4 N

Ternary Heaps (d-heaps with d=3) I

O
O O O
OO0O00O0O0O0O0O0O

Height is logs n

CS-130A

Heaps.18

/

‘ Matching Heaps I

Max Min

~

CS-130A

Heaps.19

/

‘ Min-Max Heaps I

ONONORONONONONO

Min

Max

Min

Max

CS-130A Heaps.20

O

"""""""""""""""""
""""""" ol *@ ©

@““"‘6"'@" o o @ ©

Dotted arrow a — b means that a < b.

_ /

