
CMPSC 130A
DATA STRUCTURES AND ALGORITHMS

Programming Assignment
First Turnin Day: July 21, 2014 (1:45pm)

You need to tun in electronically what you have on July 21st.
You will receive extra credit, but it depend on how much work you have completed by

this time.
DUE DATE: July 28, 2014 (1:45 pm)

Remember: You will LOSE 8% of the total points EACH DAY (rounded up) your
assignment is late.

Deadline: July 29, 2014 (1:45 pm).
Remember: Projects will not be accepted after the Deadline.

You must work on this project individually.
You may use any of the code in either of the textbooks, if it fits the project.

You may use any of the code discussed in class, if it fits the project.
Total Points: 160

PRELIMINARY VERSION

1 Introduction

For this programming assignment you need to write and implement a set of C++ Classes and Member
Functions for the multiset of positive integers ADT. The ADT consists of a multiset of positive integers
whose values are between 1 and 2,000,000,000. In Section 2 we discuss the user interface commands.
The ADT must be represented by Sorted Linked List (SLL) or a Weight-Biased Leftist Tree (WBLT),
depending on the input and the number of elements stored as defined in Section 3. In Section 4 we
give you instructions on the coding. Later on we will post in the map.html page instructions for the
electronic turnin of your project, an example, and sample input and output files.

The objective of this project is for you to practice the implementation of data structures, and use
C++, rather than trying to make you an expert in C++. We are not looking for you to come up with
an Object-Oriented master piece; however, your implementation must follow our guidelines and your
implementation should be object-oriented. Note that you are NOT ALLOWED to use STL (except
string) in any portion of your implementations. Though, you may use STL for debugging purposes
only. STL (except string) should NOT be part of the final code.

The ADT consists of a multiset of positive integers. Initially the multiset is empty. Note that since
the mathematical object is a multiset, we do keep multiple copies of elements in the multiset. In this
project you will be manipulating many multisets and each multiset will have a name. The names of all
the multisets will NOT be unique. When we have two or more multisets with the same name, we will be
operating on the version of the multiset that was last defined and has not yet been deleted. The name
of each multiset consists of a (nonempty) sequence of at most 80 (lower case) letters from the English
alphabet. The names of the multisets will be stored in a Trie similar (but not identical) to the one
discussed in class. Note that an element may be in more than one of the multisets being represented,
and in each multiset there may be more than one copy of an element.

Note that when objects are no longer required by the program, YOU MUST free them via the
destructor which is used by the C++ delete command. For complex objects, they must be deleted
one sub-object at a time. The procedures must be efficient. This will be discussed later on. Your
procedures are NOT allowed to change representation just before an operation is to be performed, then
perform the operation on a simple structure, and then transform back the resulting data into the original

1

representation.

2 User Interface

Your main program must read in an arbitrary sequence of commands each in one line and ending with
a finish-up command of the form given below. When we write < s > or < t > below, we mean any
of the multisets (whose names consist of a nonempty sequence of lower-case English letters). Note
that the empty string of letters is NOT the name of a multiset. The multisets < s > or
< t > may or may not be defined. Below we explain how to interpret these conditions. The symbol
x (or y) represents a positive integer (value is between 1 and 2,000,000,000). The symbols k represent
a non-negative integer. You may assume that the input is free from FORMAT ERRORS. Remember
that all the valid elements in a multiset are integers in the range [1, 2000000000]. Your program will
process a sequence of the following commands:

Create < s >

If multiset < s > is undefined, then define an empty multiset with name < s >. If the multiset
was defined already, then you we have a new version of the multiset which is initially empty. After
this operation the multiset < s > will be defined.

Merge < s > < t >

If at least one of the multisets < s > or < t > is not defined, the operation will be a no-op.
Otherwise, the current version of multiset < s > will get all the elements in the current version
of multiset < t >. The current multiset < t > will remain defined, but it will become an empty
multiset. Do NOT implement this operation as a series of DeleteMins and Inserts.

Delete < s >

If multiset < s > is not defined, then it will be a no-op. Otherwise delete the current version
of multiset < s >. I.e., delete all its elements. It this was the only version of multiset < s >

then delete the name of the multiset from the current multisets available and multiset < s >

will become undefined. On the other hand, if there is another version of multiset < s > then
the multiset < s > that was created last and has not yet been deleted will become the current
multiset < s > from now on and multiset < s > continues to be defined. Do NOT implement this
as series of DeleteMins.

DeleteAll < s >

If multiset < s > is not defined, then it will be a no-op. Otherwise delete all the versions of
multiset < s >. I.e., delete all the elements in all the multisets named < s >. Multiset < s > will
become undefined after this operation. Do NOT implement this as sequence of Delete < s > or
DeleteMins.

Insert < s > x
If the multiset < s > is not defined, then it will be a no-op. Otherwise insert element x in the
current version of multiset < s >.

DeleteMin < s >

If the multiset < s > is not defined or it is defined and empty, then it will be a no-op. Otherwise
delete the smallest element from the current multiset < s >. The multiset will continue to be
defined, even if it becomes empty.

2

PrintMin < s >

If the multiset < s > is not defined or it is defined and the current multiset < s > is empty, then
it will be a no-op and nothing will be printed. Otherwise, the operation will print the smallest
element in the current multiset < s > and the contents of the current multiset < s > will not
change.

PrintMax < s >

If the multiset < s > is not defined or it is defined and the current multiset < s > is empty, then
it will be a no-op and nothing will be printed. Otherwise, the operation will print the largest
element in the current multiset < s > and the contents of the current multiset < s > will not
change. Do NOT implement this as a sequence of DeleteMins and Inserts.

PrintNum < s >

If the multiset < s > is not defined, then it will be a no-op and nothing will be printed. Otherwise,
it will count and print the number of elements in the current multiset < s >. If the multiset is
empty, then it will print 0.

Dist < s > k

If the multiset < s > is not defined, then it will be a no-op and nothing will be printed. Otherwise,
count and then print the number of elements in the current multiset < s > with value at least m
and at most m+ k, where m is the smallest element stored in the current multiset < s >. If the
multiset is empty, then it will print 0.

PrintKth < s > k

If the multiset < s > is not defined, then it will be a no-op and nothing will be printed. Otherwise,
find and print the kth smallest element in the current multiset < s >, when there are k or more
elements in the current multiset < s >. If there are fewer than k elements, then nothing should
be printed. It is normally the case that k is very small compared to the number of elements in
the multiset. You are allowed to create an array with O(k) elements at the beginning of this
operation, but you must delete it at the end of this operation. DO NOT implement as series of
DeleteMins and Inserts.

DeleteKth < s > k
If the multiset < s > is not defined, then it will be a no-op and nothing will be deleted. Otherwise,
delete the kth smallest element in the current version of multiset < s >, when there are k or more
elements in the current multiset < s >. If there are fewer than k elements, then nothing should
be deleted. It is normally the case that k is very small compared to the number of elements in
the multiset. You are allowed to create an array with O(k) elements at the beginning of this
operation, but you must delete it at the end of this operation. DO NOT implement as series of
Delete-Mins and Inserts.

CountN
Count and print the number of multisets currently defined. If there are none defined, then print
0.

CountNT
Count and print the total number of multisets including multiple copies of the multisets. If there
are no multisets defined, then print 0.

PrintNumSF < s > < t >

Print the total number of multisets with names (in alphabetical order) after name < s > and

3

before < t >. Include in the count all the versions of all the multiset. Note that < s >

and < t > will not be included in the count. Note that < s > and < t > may or may not be
defined multisets. If there are no names between these limits, then print 0.

DeleteSF < s > < t >

Delete all the CURRENT multisets with names (in alphabetical order) after name < s > and
before < t >. Note that < s > and < t > will not be deleted. Note that < s > and < t > may or
may not be defined multisets. DO NOT implement operation as a sequence of Delete and Insert
operations. The implementation should be an “integrated” operation.

Check < s >

Appendix 3 has the code for this operation. If multiset < s > is not defined then the operation
will do nothing. If the multiset < s > is defined and the current multiset is empty, the print “True
0 1”. Let j = 1 if the current multiset < s > is represented by a SLL and j = 2 if it is represented
by a WBLT. The procedure checks to see if the current multiset < s > is a valid representation for
the multiset. If it is valid, then print “True” followed by the number of elements in the multiset
and then the value of j. If it is not valid, then it prints “False 0” followed by the value for j.

CheckTrie
Appendix 3 has the code for this operation. This procedure checks to see if the Trie is valid. If it
is valid, then print “True” followed by the number of multisets with different names. Otherwise,
prints “False 0”.

Quit
Finish up. Return all the space used by your objects and end the program.

Again, do not implement the above operations as a sequence of DeleteMins and Inserts. An example
as well as its input file and corresponding output file for this example will be added to the map.html

web page.

3 Internal Representation

The names of the multisets will be represented by a Trie. The Trie is similar to the one defined in
class. The nodes in the Trie will be of two types: BasicTrieNodes and TrieNodes. All the leaf nodes
in the Trie will be BasicTrieNodes and all internal nodes will be TrieNodes. Note that this will save
space as all the BasicTrieNodes do not have an array of pointers. The ptr2ms points to the multiset
that stores all the elements in the multiset corresponding to the name stored at the Trie that ends at
this BasicTrieNode or TrieNode. Note that StrEnds is not needed as one can compute it by checking
whether or not ptr2ms is Null or not.

const int StrMaxElem = 81;

const int TrieMaxElem = 26;

class BasicTrieNode {

private:

MultiSet *ptr2ms;

public:

virtual int WhoAmI() {return(0);}

virtual bool CheckTrie(int*); // Changed 7/14

4

};

class TrieNode: public BasicTrieNode{

private:

BasicTrieNode *ptr[TrieMaxElem];

public:

int WhoAmI() {return(1);}

bool CheckTrie(int*); // Changed 7/14

};

class Trie {

private:

BasicTrieNode *root;

};

We will be using either Sorted Linked Lists (SLL) or Weight-Biased Leftist Trees (WBLT) (discussed
in class) to represent multisets. Two input variables, useSLL and useWBLT, such that 0 ≤ useSLL <

useWBLT , will be used to decide the representation to be used. The representation is dynamic and
the one used depends on the number of elements in the multiset. When a multiset has a number of
elements at most useSLL it is represented by a SLL, but if it has at least useWBLT elements, then we
represent the set by a WBLT. If the number of elements is more than useSLL and less than useWBLT

then either representation may be used. Note that as the number of elements stored in the MultiSet

changes, you may need to change representation.
When useSLL (or useWBLT) is a very large value, you will be using a SLL as long as then number

of elements in the multiset is less than that large value. When a set when created from scratch will
be represented by a SLL, unless useSLL is zero. When useSLL is zero you will always represent the
multiset by a WBLT.

A good explanation of basic weight-biased leftist trees is given in the in the textbook [Sa] (Section
12.5). There is also an explanation in wikipedia, but I am not sure it is correct. It will also be discussed
in class and the slides will be in the map.html web page.

Now the elements in the multiset will be represented by objects of the classes SLL or WBLT which
are derived from the class MultiSet. The integer number is used for the number of elements in the
multiset, and ptrpreviousVersion points to previous version of the multiset. The pointer first is
used to point the first node in the SLL and root points to the root node of the WBLT. The meaning of
the private variables for the SLLNodes and WBLTNodes is straight forward. The classes are defined as
follows.

class MultiSet{

private:

int number;

MultiSet* ptr2previousVersion;

public:

virtual int WhoAmI() {}

};

class SLL: public MultiSet{

private:

SLLNode* first;

5

public:

int WhoAmI(){return 2;}

};

class WBLT: public MultiSet{

private:

WBLTNode* root;

public:

int WhoAmI(){return 3;}

};

class SLLNode {

private:

int data;

SLLNode *next;

public:

void Insert(int);

int DeleteMin(int);

};

class WBLTNode {

private:

int data;

int w;

WBLTNode *leftchild;

WBLTNode *rightchild;

public:

void Insert(int);

int DeleteMin(int);

};

In Appendix 1 you will find an example of the structure for the classes defined above. All the classes
are assembled together in Appendix 2.

4 CODING

We will provide you with some test files later on, but you may create (individually or in a group) test
files to test your programs. You may interchange your test files with other students in the class and
compare results. But each student must debug their code independently. This way you will further
develop your debugging skills.

If you have a test file that you feel is robust, turn them in when you turnin your code and we might
use it to test all the programs. Write a one page summary that describes which operations
have been implemented correctly and which have not. Explain what were he major hurdles
you encounter while doing this project. Explain how would you go about the next time
you have a project like this. Your write-up must be turned in to the CS Mailbox in HFH 2108
when you turnin your code or you may create a PDF file and turn electronically with your code. The

6

programs should also be turned in electronically via the turnin program (we will give instructions about
this later on).

INPUT: The first input line that your program must read has the value for useSLL followed by
useWBLT. Then you will find a sequence of operations (one per line) ending with the operation “Quit”.
It is assumed that useSLL < useWBLT.

The program must be in C++, but it is not required to be an Object Oriented work of art. But
you must use the C++ stuff discussed in class and the classes given in the Appendix 2. In “principle”
you must use the same structures defined in Appendix 2. Though you need to add a bunch of member
functions, but no additional data can be included in the classes. The names for variables may be
different. But if you change the names of variables, you may need to change the code we will provide
for Check and CheckTrie. Leave the procedures recursive, but the code must be efficient. Nodes that
do not need to be visited in the operations should not be visited. YOU MUST USE makefiles, split
your files into .H and .C files. Each Class must have a .H file for the class declarations and a .C file
for all the code for the Class functions. You must turn in electronically your code. To grade it, we will
save it in a directory and type “make”, followed by “./executeit < data.1 > output.1 ”, “./executeit
< data.2 > output.2 ”, ..., where “data.1”, “data.2”, ... are files we will be creating, and the answers
you program computes is stored in output.1, output.2, etc. This means is that you must leave the
executable in a file called executeit. Note that the above execution is by redirecting the input/output
so your program should do all the input/out through the standard input (cin) and standard output
(cout). After everyone turns in their project we will make the test files available to you. Your program
MUST work in the CSIL PCs running Linux using the g++ compiler..

The program MUST work in the CSIL PCs under Linux. Note that your grade depends on how well
you program works on the examples we will use to test your program. These files include small, large
and very large files. Partial credit will be given if not all of the code is working correctly. The partial
credit will depend on how well your code works on the test files. You will be deducted points if your
program takes too long to execute and/or does not use the structures we define here (in
either of these cases you may loose most of the points).

Implement your procedures as efficient as possibles, BUT leave the procedures RECURSIVE. Nodes
that do not need to be visited in operations should not be visited. Try to use the minimum amount
of additional space. But do not optimize to the last bit. Your procedures must perform logical sub-
functions. Your code must be readable and there should be appropriate comments all over the code
describing its behavior. Points will be deducted if your code is unreadable and/or the comments in your
program are not enough and/or inappropriate.

Appendix 1 has an example of the structures used. Appendix 2 has all the Classes and it is also in
the map.htm web page. Appendix 3 has the code for Check and CheckTrie.

5 Time complexity of your procedures

The time complexity for your procedures must be as in the following table.

7

Operation TC SLL TC WBLT

Create O(#s+ c) O(#s+ c)

Merge O(#s+#t+m) O(#s+#t+ logm)

Delete O(#s+ n) O(#s+ n)

Insert O(#s+ n) O(#s+ log n)

DeleteMin O(#s+ c) O(#s+ log n)

PrintMin O(#s+ c) O(#s+ c)

PrintMax O(#s+ n) O(#s+ n)

PrintNum O(#s+ c) O(#s+ c)

Dist O(#s+ k) O(#s+ k)

PrintKth O(#s+ k) O(#s+ k log k)

DeleteKth O(#s+ k) O(#s+ k log k + log n)

CountN O(#s+N) O(#s+N)

CountNT O(#s+M +N) O(#s+M +N)

PrintNumSF O(#s+#t+ rh) O(#s+#t+ rh)

DeleteSF O(#s+#t+ r′h) O(#s+#t+ r′h)

Quit O(q) O(q)

Table 1: Required time complexity for your implementation. Note that we do not include the time
complexity needed to change representation. Note that the number of English letters is 26 which is just
a constant.

Term Meaning

c Constant independent of the problem size.

#s Number of characters in < s >.

#t Number of characters in < t >.

m Total elements in both multisets.

n Number of elements in the multiset.

k Value of k in operation.

N Number of TrieNodes.

M Total number of multisets (including all versions).

r Value printed by operation (constant, if zero or nothing printed).

h Height of Trie.

r′ Number of TrieNodes deleted in the operation.

q Total amount of space allocated dynamically in your program.

Table 2: Terms.

8

 []

 [3]

 [55]

 car [9,10,12,15,16,18,18]

 cat [2,4,6,8,10,12,14]

ca [3,7,9]

 [1,9]

 [4,6,8]

7

1 1 1 1

2

4 8

10 6 12 14

0

7

root

5

5

7

12 12

11

15

1

APPENDIX 1

 [5,7,12,12,15]

 [9,25,33,63,63]

 are [9,12,12,17]

MultiSets Represented

a [4,9]

 c []

1

1

63

33

25

9

63

5

1 1

9

12

17 12

4

3

0

1

1
9

12 10

15 18 16

18

1

11

31

118

5 18 20

9

7

3

9

1

4

6

8

3

55

9

42

3

2

3

7

2

33

7

2

3

5

3

4
3

5

a c

r

e

a

r t

Represents a BasicTrieNode

Represents a TrieNode

Represents a WBLTNode

(the number below the circle is the w value)

Represents a WBLT (object) (includes MultiSet)

Represents a SSL (object) (includes Multiset)

Represents a SLLNode

3

Figure 1: Example of the structure

9

Appendix 2

#include <iostream>

#include <string>

using namespace std;

// Global Variables

const int StrMaxElem = 81;

const int TrieMaxElem = 26;

class TrieNode;

class MultiSet;

class BasicTrieNode {

private:

MultiSet *ptr2ms;

public:

virtual int WhoAmI() {return(0);}

virtual bool CheckTrie(int*); // Changed 7/14

};

class TrieNode: public BasicTrieNode{

private:

BasicTrieNode *ptr[TrieMaxElem];

public:

int WhoAmI() {return(1);}

bool CheckTrie(int*); // Changed 7/14

};

class Trie {

private:

BasicTrieNode *root;

};

class MultiSet{

private:

int number;

MultiSet* ptr2previousVersion;

public:

virtual int WhoAmI() {}

};

class SLLNode;

class WBLTNode;

class SLL: public MultiSet{

private:

10

SLLNode* first;

public:

int WhoAmI(){return 2;}

};

class WBLT: public MultiSet{

private:

WBLTNode* root;

public:

int WhoAmI(){return 3;}

};

class SLLNode {

private:

int data;

SLLNode *next;

public:

void Insert(int);

int DeleteMin(int);

};

class WBLTNode {

private:

int data;

int w;

WBLTNode *leftchild;

WBLTNode *rightchild;

public:

void Insert(int);

int DeleteMin(int);

};

int main(void)

{

return 0;

}

11

