
CS-130A Red-Black-Trees.1'

&

$

%

Dictionaries

Sets and Multisets; Opers: (Ins., Del., Mem.)

• Sequential sorted or unsorted lists.

• Linked sorted or unsorted lists.

• Tries and Hash Tables.

• Binary Search Trees.

Priority Queues

Multisets; Opers: (Ins., Del-Max. (or Del-Min.))

• Sequential sorted or unsorted lists.

• Linked sorted or unsorted lists.

• Tries and Hash Tables.

• Binary Search Trees.

• Heaps



CS-130A Red-Black-Trees.2'

&

$

%

Min-Max Priority Queues

Matching Heaps, Min-Max Heaps and Deaps are

for the case of Multisets and the operations are

Ins., Del-Max. and Del-Min.

Generalized Dictionaries

Set and Multisets; Opers: Insert, Delete, Del-Min,

Del-Max, Concatenate, Split, Find kth Smallest

element.

• Sequential sorted or unsorted lists, Linked

sorted or unsorted lists, Tries and Hash

Tables, Binary Search Trees.

• Red-Black Trees



CS-130A Red-Black-Trees.3'

&

$

%

Binary Search Trees

• Work for Sets and Multisets (we use sets

here).

• For each node x, the values in the left subtree

of the tree rooted at x are less than the value

stored at x, and the values in the right

subtree of the tree rooted at x are greater

than the value at stored at x.

• Insert, Delete, Delete-Min, Delete-Max,

Concatenate, and split take time O(h), where

h is the height of the tree. But h may be as

large as n, the number of nodes in the tree.



CS-130A Red-Black-Trees.4'

&

$

%

Membership in BSTree

Search for the element until you find it or you

reach a null pointer. Time complexity is O(h),

where h is the height of the tree.



CS-130A Red-Black-Trees.5'

&

$

%

Insert in BSTree



CS-130A Red-Black-Trees.6'

&

$

%

Delete in BSTree

10

11

12

11

12

10

11

12

10

11

12

1

2

3

84

6

7

1

2

3

5

6

84

1

2

5

6

84

1

2

3

5

6

7

4 10

7
7

Delete 5
Delete 8

Delete 3

• Let x be the element to be deleted.

• Search for x in the BST.

• If x is not in the tree (you end at a null

pointer), then just return

• Else, let node(x) be the node where x is



CS-130A Red-Black-Trees.7'

&

$

%

located.

• If node(x) does not have a right child, then

make the parent of node(x) (or root node(x)

is the root) point to left child of node(x)

instead of pointing to node(x). Return to the

storage pool node(x).

• Else (node(x) has a right child). Let y be the

node with smallest value larger than x. Make

the parent of y point to the right child of y

instead of pointing to y. Assign to node(x)

the value stored at node y. Return to the

storage pool node y.

Delete takes time O(h),

where h is the height of the tree.



CS-130A Red-Black-Trees.8'

&

$

%

Red-Black Trees

Red-Black Trees: BSTs with O(log n) height.

Definition: Every Red-Black Tree is a binary

search tree with the following properties.

(1) Every node is either colored red or black

(2) The root is colored black

(3) If a node is colored red then its children must

be colored black.

(4) For every node x, every path from node x to

a NULL pointer must visit the same number

of black nodes.



CS-130A Red-Black-Trees.9'

&

$

%

Note that the lines and boxes represent null

pointers. You may think about these nodes as

external nodes and the other (regular) nodes as

internal nodes. Al external nodes are black nodes.

65

50 80

10 60 70

5 62

Not RBT

Not RBT



CS-130A Red-Black-Trees.10'

&

$

%

Height of a Red-Black Tree

The rank of a node in a red-black tree is the

number of black nodes on any path from the node

to any NULL pointer in its subtree.

Lemma 1: Let P and Q be two paths from a

node x to a NULL pointer in a red-black tree.

Then length(P ) ≤ 2length(Q), where length is

the number of nodes in the path from the node to

the given NULL pointer.

Proof: Follows from the fact that P and Q visit

the same number of black nodes (4), between

every pair of black nodes there is at most one red

node (3) and the root node is a black node.

The leftmost path in the above figure has length

4, and the length of the rightmost path is 2.



CS-130A Red-Black-Trees.11'

&

$

%

Lemma 2: Let h be the height of a red-black

tree, let n be the number of internal nodes in the

tree, and let r be the rank of the root. Then

(a) h ≤ 2r.

(b) n ≥ 2r − 1.

(c) h ≤ 2log2(n + 1).

Proof: Item (a) follows from the fact that all

paths from the root to a NULL pointer have at

most 2r nodes.

Inductively one can show that the number of

internal nodes with rank 1 ≤ j ≤ r is at least

2r−j . Therefore, n ≥
∑r

j=1
2j−1 = 2r − 1, and (b)

holds.

Since (b) holds we know that n ≥ 2r − 1.

Substituting (a) we know n ≥ 2h/2 − 1. Or

equivalently n + 1 ≥ 2h/2. Taking logs on both

sides and passing the two to the other side we get

(c).



CS-130A Red-Black-Trees.12'

&

$

%

Membership

Procedure Membership is the same as for BSTrees

which takes O(h). Since h = O(log n), it then

follows that membership takes O(log n).

Insert

To show that Insert can be performed in O(log n)

time, we only need to show that rebalancing takes

O(h) time.



CS-130A Red-Black-Trees.13'

&

$

%

General Idea

...0 or more CCs

Nothing or a Rot or Dob Rot



CS-130A Red-Black-Trees.14'

&

$

%

Deletion Transformation

Transform the problem of Deletion to the problem

of deletion of a node with two Null Pointers.

...

or

...

...

or

...

No Ext Ch.

1 Ext Ch.

2 Ext Ch.


