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Self-Adjusting Heaps

• No explicit structure. Adjust the structure in

a simple, uniform way, so that the efficiency

of future operations is improved.

Amortized Time Complexity

• Total time for operations / number of

operations.
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Example: Amortized Complexity

Let S be an array (with n + 1 elements) and top

be an nonnegative integer. We will use S and top

to represent a stack. Initially top = 0. There are

three operations on the stack: Push, Pop and

Multipop. These operations are defined as

follows:

Push (x)

top++;

S[top] = x;

end Push;

Pop (x)

if (top == 0) then return;

print S[top];

top--;

return;

end Pop;
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Multipop (k)

for i = 1 to k do

{if (top == 0) then return;

print S[top];

top--;}

return

end Multipop;

What is the worst case time complexity for

Push(x), Pop(x), and Multipop(k)?

Executing any sequence of n operations of the

form Push(x), Pop(x), and Multipop(k) takes

time equal to n times the worst time complexity

of executing any of the above three operations.

Is the bound best possible (i.e., is it tight)?
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Comparison

• Worst Case TC: Insert O(x) and Delete

O(y): Every time the algorithm is run each

Insert operation takes O(x) and each Delete

operation takes O(y).

• Average Case TC: Insert O(x) and Delete

O(y): When the algorithm is run over a set of

inputs with a given frequency count the

Insert operation takes on average O(x) and

the Delete operation takes on average O(y).

• Amortized TC: Insert O(x) and Delete

O(y): Every time the algorithm is run the

Insert operation takes on average O(x) and

the Delete operation takes on average O(y).
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Mergeable Heap

• ADT defined over a totally ordered universe.

Operations are:

• Make heap(h): Create a new, empty heap,

named h.

• Find Min(h): Return the min item in heap

h. If h is empty then return the special item

called “null”.

• Insert(x, h): Insert item x in heap h, not

previously containing it.

• Delete min(h): Delete the minimum item

from heap h, and return it. If the heap is

initially empty then return “null”.

• Meld(h1, h2): Return the heap formed by

taking the union of disjoint heaps h1 and h2.

This operation destroys h1 and h2.
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Heap-Ordered Binary Tree (Skew Heaps)

Binary tree whose nodes are items.

Tree is arranged in a heap order, if p(x) is the

parent of x, then the item stored at p(x) is

less than the item stored at x.

Implementation of Operations

• Make Heap: O(1) time by just setting the

root of h to null.

• Find Min(h): Return the item stored in the

root of h.

• Insert(x, h): Make x a single node heap and

meld it with h.

• Delete min(h): Delete the root and replace h

with the meld of its left and right
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Meld(h1, h2)

• Form a single tree by traversing the right

paths of h1 and h2, merging them into a

single right path with items in increasing

order.

• The left subtrees of nodes along the merge

path do not change.

• Swap the left and right children of every node

on the merge path except at the lowest level.
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MELD Algorithm

Procedure meld(val h1, h2)

if h2 = null then return h1

else return xmeld(h1, h2);

end

Procedure xmeld(val h1, h2)

// h2 is not null //

if h1 = null then return h2;

if item(h1) > item(h2) then h1 ↔ h2;

( lchild(h1), rchild(h1) ) ←

( xmeld(rchild(h1),h2), lchild(h1) );

return h1

End of Procedure
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Definitions

• S: Collection of Skew Heaps.

• Φ(S): Potential of S.

• m operations with times t1, t2, ..., tm.

• ai amortized time for operation i.

• Φi: Potential after operation i.

• Φ0: Initial potential.

•
∑

ti =
∑

(ai − Φi + Φi−1) = Φ0 − Φm +
∑

ai

• Φ0 is initially zero.

• Φi is non-negative.

UCSB TG



CS 230A Heaps-10'

&

$

%

Idea

• High Potential: Remaining operations may be

expensive.

• Low Potential: Remaining operations are

inexpensive.

• Amortized bound: O(log n) time per

operation.

Definitions

• wt(x): Number of descendants of x (incl. x).

• Non-root x is heavy if wt(x) > wt(p(x))/2.

• Non-root x is light otherwise.

• Node x is right if it is a right child.

• Node x is left if it is a left child.
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Results

Lemma 1: Of the children of any node, at most

one is heavy.

Lemma 2: On any path from node x down to a

descendant y, there are at most

⌊log (wt(x)/wt(y))⌋ light nodes, not counting x.

In particular, any path in an n-node tree contains

at most ⌊log n⌋ light nodes.

Proof: If there are k light nodes not including x

along the path from x to y, then

wt(y) ≤ wt(x)/2k ⇒

k ≤ log (wt(x)/wt(y)).

Potential of a Skew Heap: Total number of

right heavy nodes in it.
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Definitions

• Let n1 and n2 be the number of nodes in h1

and h2, resp.

• Number of light nodes on the right path of h1

(h2) is at most ⌊log n1⌋ (⌊log n2⌋).

• Let k1 and k2 be the number of heavy nodes

on the right path of h1 and h2, resp.

• Let k3 be the number of new right heavy

nodes in the resulting heap. Clearly

k3 ≤ ⌊log n⌋

UCSB TG

CS 230A Heaps-13'

&

$

%

Bounds

• Number of nodes on the merge path is at

most

2 + ⌊log n1⌋+ k1 + ⌊log n2⌋+ k2 ≤

1 + 2⌊log n⌋+ k1 + k2

• Increase in potential because of the meld is

k3 − k1 − k2 ≤ ⌊log n⌋ − k1 − k2

• Amortized cost is 3⌊log n⌋+ 1.
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