Self-Adjusting Heaps

- No explicit structure. Adjust the structure in a simple, uniform way, so that the efficiency of future operations is improved.

Amortized Time Complexity

- Total time for operations / number of operations.

Example: Amortized Complexity

Let S be an array (with $n+1$ elements) and top be an nonnegative integer. We will use S and top to represent a stack. Initially top $=0$. There are three operations on the stack: Push, Pop and Multipop. These operations are defined as follows:

```
Push (x)
    top++;
    S[top] = x;
end Push;
Pop (x)
    if (top == 0) then return;
    print S[top];
    top--;
    return;
end Pop;
```

```
Multipop (k)
    for \(i=1\) to \(k\) do
            \{if (top == 0) then return;
            print S[top];
            top--;\}
    return
end Multipop;
```

What is the worst case time complexity for Push(x), Pop(x), and Multipop(k)?

Executing any sequence of n operations of the form Push (x), Pop(x), and Multipop(k) takes time equal to n times the worst time complexity of executing any of the above three operations.

Is the bound best possible (i.e., is it tight)?

Comparison

- Worst Case TC: Insert $O(x)$ and Delete $O(y)$: Every time the algorithm is run each Insert operation takes $O(x)$ and each Delete operation takes $O(y)$.
- Average Case TC: Insert $O(x)$ and Delete $O(y)$: When the algorithm is run over a set of inputs with a given frequency count the Insert operation takes on average $O(x)$ and the Delete operation takes on average $O(y)$.
- Amortized TC: Insert $O(x)$ and Delete $O(y)$: Every time the algorithm is run the Insert operation takes on average $O(x)$ and the Delete operation takes on average $O(y)$.

Mergeable Heap

- ADT defined over a totally ordered universe. Operations are:
- Make heap (h): Create a new, empty heap, named h.
- Find $\operatorname{Min}(h)$: Return the min item in heap h. If h is empty then return the special item called "null".
- $\operatorname{Insert}(x, h)$: Insert item x in heap h, not previously containing it.
- Delete $\min (h)$: Delete the minimum item from heap h, and return it. If the heap is initially empty then return "null".
- Meld $\left(h_{1}, h_{2}\right)$: Return the heap formed by taking the union of disjoint heaps h_{1} and h_{2}. This operation destroys h_{1} and h_{2}.

Heap-Ordered Binary Tree (Skew Heaps)

Binary tree whose nodes are items.
Tree is arranged in a heap order, if $p(x)$ is the parent of x, then the item stored at $p(x)$ is less than the item stored at x.

Implementation of Operations

- Make Heap: $\mathrm{O}(1)$ time by just setting the root of h to null.
- Find $\operatorname{Min}(h):$ Return the item stored in the root of h.
- Insert (x, h) : Make x a single node heap and meld it with h.
- Delete $\min (h)$: Delete the root and replace h with the meld of its left and right

$\operatorname{Meld}\left(h_{1}, h_{2}\right)$

- Form a single tree by traversing the right paths of h_{1} and h_{2}, merging them into a single right path with items in increasing order.
- The left subtrees of nodes along the merge path do not change.
- Swap the left and right children of every node on the merge path except at the lowest level.

MELD Algorithm

Procedure meld(val h_{1}, h_{2}) if $h_{2}=$ null then return h_{1} else return $\operatorname{xmeld}\left(h_{1}, h_{2}\right)$;
end

Procedure xmeld(val h_{1}, h_{2})
// h_{2} is not null //
if $h_{1}=$ null then return h_{2};
if $\operatorname{item}\left(h_{1}\right)>\operatorname{item}\left(h_{2}\right)$ then $h_{1} \leftrightarrow h_{2}$;
$\left(\operatorname{lchild}\left(h_{1}\right), \operatorname{rchild}\left(h_{1}\right)\right) \leftarrow$
(xmeld($\left.\left.\operatorname{rchild}\left(h_{1}\right), h_{2}\right), \operatorname{lchild}\left(h_{1}\right)\right)$;
return h_{1}
End of Procedure

Definitions

- S : Collection of Skew Heaps.
- $\Phi(S)$: Potential of S.
- m operations with times $t_{1}, t_{2}, \ldots, t_{m}$.
- a_{i} amortized time for operation i.
- Φ_{i} : Potential after operation i.
- Φ_{0} : Initial potential.
- $\sum t_{i}=\sum\left(a_{i}-\Phi_{i}+\Phi_{i-1}\right)=\Phi_{0}-\Phi_{m}+\sum a_{i}$
- Φ_{0} is initially zero.
- Φ_{i} is non-negative.

Idea

- High Potential: Remaining operations may be expensive.
- Low Potential: Remaining operations are inexpensive.
- Amortized bound: $O(\log n)$ time per operation.

Definitions

- $w t(x)$: Number of descendants of x (incl. x).
- Non-root x is heavy if $w t(x)>w t(p(x)) / 2$.
- Non-root x is light otherwise.
- Node x is right if it is a right child.
- Node x is left if it is a left child.

Results

Lemma 1: Of the children of any node, at most one is heavy.

Lemma 2: On any path from node x down to a descendant y, there are at most
$\lfloor\log (w t(x) / w t(y))\rfloor$ light nodes, not counting x.
In particular, any path in an n-node tree contains at most $\lfloor\log n\rfloor$ light nodes.

Proof: If there are k light nodes not including x along the path from x to y, then

$$
\begin{gathered}
w t(y) \leq w t(x) / 2^{k} \Rightarrow \\
k \leq \log (w t(x) / w t(y))
\end{gathered}
$$

Potential of a Skew Heap: Total number of right heavy nodes in it.

Definitions

- Let n_{1} and n_{2} be the number of nodes in h_{1} and h_{2}, resp.
- Number of light nodes on the right path of h_{1} $\left(h_{2}\right)$ is at most $\left\lfloor\log n_{1}\right\rfloor\left(\left\lfloor\log n_{2}\right\rfloor\right)$.
- Let k_{1} and k_{2} be the number of heavy nodes on the right path of h_{1} and h_{2}, resp.
- Let k_{3} be the number of new right heavy nodes in the resulting heap. Clearly $k_{3} \leq\lfloor\log n\rfloor$

Bounds

- Number of nodes on the merge path is at most
$2+\left\lfloor\log n_{1}\right\rfloor+k_{1}+\left\lfloor\log n_{2}\right\rfloor+k_{2} \leq$
$1+2\lfloor\log n\rfloor+k_{1}+k_{2}$
- Increase in potential because of the meld is $k_{3}-k_{1}-k_{2} \leq\lfloor\log n\rfloor-k_{1}-k_{2}$
- Amortized cost is $3\lfloor\log n\rfloor+1$.

