Leftist Trees

- Linked binary trees.

- Insert and DeleteMin (or Delete Max) takes $O(\log n)$ time.

- Can Meld (Merge) two leftist trees in $O(\log n)$ time.
Extended Binary Trees

(Add external nodes)
W() Weight Function

W(x): For any node x, W(x) is the total number of (internal) nodes in the subtree rooted at x (including x).

![Diagram of a tree with node weights labeled 0, 1, 2, 3, 5, 9, 3, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 5, 9, 3, 0.]
Computing $W(x)$

$$S(x) = \begin{cases}
0 & \text{if } x \text{ is an external node} \\
W(lc(x)) + W(rc(x)) + 1 & \text{o.w.}
\end{cases}$$

where lc (rc) represents leftchild (rightchild).
Weight-Biased Leftist Trees (WBLT)

- A Binary tree is a WBLT
- iff
- for every internal node \(x \),
 \[W(lc(x)) \geq W(rc(x)) \]
Property of WBLTs

- A shorthest root to external node path has length $O(\log W(\text{Root}))$.
- The rightmost path has this length.
A Min WBLT that satisfies the “Min Heap ordering” is a Min WBLT.

The Insert, DeleteMin and Meld operations can be performed in $O(\log n)$ time.
Insert Operation

Insert x in WBLT H is just $\text{MELD}(x, H)$

Insert x with value 8 \Rightarrow Meld H and the single node WBLT x with value 8
DeleteMin Operation

DeleteMin from WBLT H is just

$$\text{MELD}(lc(H), rc(H))$$

Delete Min \Rightarrow Merge(lc(Root),rc(root))
Meld Two WBLTs

Traverse rightmost paths. See example beginning next page.
MELD TWO WBLT
PASTE BACK IN \(B \)

PASTE BACK IN \(A \)

Swapping leaves

Resulting WBLT