
CS-130A WBLT1✬

✫

✩

✪

Leftist Trees

• Linked binary trees.

• Insert and DeleteMin (or Delete Max) takes

O(logn) time.

• Can Meld (Merge) two leftist trees in

O(logn) time.

CS-130A WBLT2✬

✫

✩

✪

Extended Binary Trees

(Add external nodes)

CS-130A WBLT3✬

✫

✩

✪

W() Weight Function

W (x): For any node x, W (x) is the total number

of (internal) nodes in the subtree rooted at x

(including x).

0 0 0 0 0 0

0 0 0

0

1 1

1 23

5

9

1

3

CS-130A WBLT4✬

✫

✩

✪

Computing W (x)

S(x) =

0 if x is an external node

W (lc(x)) +W (rc(x)) + 1 o.w.

where lc (rc) represents leftchild (rightchild).

CS-130A WBLT5✬

✫

✩

✪

Weight-Biased Leftist Trees (WBLT)

• A Binary tree is a WBLT

• iff

• for every internal node x,

W (lc(x)) ≥ W (rc(x))

0 0 0 0 0 0

0 0 0

0

1 1

1 23

5

9

1

3

CS-130A WBLT6✬

✫

✩

✪

Property of WBLTs

• A shorthest root to external node path has

lengt O(logW (Root)).

• The rightmost path has this length.

CS-130A WBLT7✬

✫

✩

✪

Min WBLTs

A Min WBLT that satisfies the “Min Heap

ordering” is a Min WBLT.

0 0 0 0 0 0

0 0 0

0

1 1

1 2

2

4 3

6 8 5

8 6 9

3

5

9

1

3

The Insert, DeleteMin and Meld operations can

be performed in O(logn) time.

CS-130A WBLT8✬

✫

✩

✪

Insert Operation

Insert x in WBLT H is just MELD(x,H)

0 0 0 0 0 0

0 0 0

0

1 1

1 2

2

4 3

6 8 5

8 6 9

3

5

9

1

3

8
H x

Insert x with value 8 => Meld H and the single node WBLT x with value 8

CS-130A WBLT9✬

✫

✩

✪

DeleteMin Operation

DeleteMin from WBLT H is just

MELD(lc(H), rc(H))

0 0 0 0 0 0

0 0 0

0

1 1

1 2

2

4 3

6 8 5

8 6 9

3

5

9

1

3

Delete Min => Merge(lc(Root),rc(root))

First Delete

Then Meld

CS-130A WBLT10✬

✫

✩

✪

Meld Two WBLTs

Traverse rightmost paths. See example beginning

next page.

CS-130A WBLT11✬

✫

✩

✪

CS-130A WBLT12✬

✫

✩

✪

CS-130A WBLT13✬

✫

✩

✪

