m-way Search Trees

m-way Search Tree: Empty, or if not empty then:

- Each internal node has \(q \) children and \(q - 1 \) elements, for \(2 \leq q \leq m \).

- Nodes with \(p \) elements have exactly \(p + 1 \) children.

- Suppose a node has \(p \) elements. Let \(k_1, k_2, \ldots, k_p \) be the keys of these elements. Then \(k_1 < k_2 < \ldots < k_p \). Let \(c_0, c_1, \ldots, c_p \) be the \(p + 1 \) children of the node.

 - The elements in the subtree with root \(c_0 \) have keys smaller than \(k_1 \).

 - The elements in the subtree rooted at \(c_i \) have keys larger than \(k_i \) and smaller than \(k_{i+1} \), \(1 \leq i < p \).

 - The elements in the subtree rooted at \(c_p \) have keys larger than \(k_p \).
• a: 2, b, (10, c), (80, d)
• b: 1, e, (5, 0)
• c: 6, 0, (20, 0), (30, f), (40, 0), (50, 0), (60, 0), (70, 0)
• d: 4, 0, (82, 0), (84, 0), (86, 0), (88, g)
• e: 3, 0, (2, 0), (3, 0), (4, 0)
• f: 2, 0, (32, 0), (36, 0)
• g: 5, 0, (90, 0), (92, 0), (94, 0), (96, 0), (98, 0)
• Searching; Inserting (31, 65);
• Deleting (20, 84, 5, 10);
• Format \((n, c_0, (e_1, c_1), (e_2, c_2), \ldots, (e_n, c_n))\)
B-Trees of Order $m > 2$

(Different from textbook [W])

A B-Tree of order m is an m-way search tree. If the B-tree is not empty, the corresponding extended tree satisfies the following properties:

- The root has at least two children.
- All internal nodes other than the root have at least $\lceil m/2 \rceil$ children.
- All external nodes are at the same level.

A B-tree of order 7.
Properties

- $m > 2$ because they cannot represent all possible sets.
- B-Tree of order 3 is a 2-3 tree.
- B-Tree of order 4 is a 2-3-4 tree (Same as RB-Tree).

Lemma 11.3: Let T be a B-tree of order m and height h. Let $d = \lceil m/2 \rceil$ and let n be the number of elements in T.

1. $2d^{h-1} - 1 \leq n \leq m^h - 1$

2. $\log_m(n + 1) \leq h \leq \log_d\left(\frac{n+1}{2}\right) + 1$.

Proof: (1) \Rightarrow (2). (1) follows from the fact that the minimum number of nodes on levels 1, 2, 3, 4, ..., h is 1, 2, $2d$, $2d^2$, ..., $2d^{h-2}$, and the maximum num. is 1, m, m^2, ..., m^{h-1}. The number of null pointers = $n + 1$.
• A B-tree of order 200 and height 3 has at least 19,999 elements and therefore can represent all UCSB students.

• A B-tree of order 200 and height 5 has at least 199,999,999 and therefore can represent all U.S. voters.

• The order of a B-Tree is determined by the disk block size and size of individual elements.

• For obvious reasons all the B-tree examples have small order.

• Searching is like in an m-way search tree.
Insert Example (B-Tree of Order 3)

1. \begin{align*}
\text{30} \\
\text{20} & \quad \text{40} \\
\text{10} & \quad \text{15} & \quad \text{25} & \quad \text{35} & \quad \text{45} & \quad \text{50}
\end{align*}

1.38

1. \begin{align*}
\text{30} \\
\text{20} & \quad \text{40} \\
\text{10} & \quad \text{15} & \quad \text{25} & \quad \text{35} & \quad \text{38} & \quad \text{45} & \quad \text{50}
\end{align*}

1.55

\begin{align*}
\text{45} & \quad \text{50} & \quad \text{55}
\end{align*}

\rightarrow

\begin{align*}
\text{50} \\
\text{45} & \quad \text{55}
\end{align*}

1.37
Nodes are of the form \(n, c_0, (e_1, c_1), \ldots, (e_n, c_n) \), where the \(e \)'s are the values or keys and the \(c \)'s are the pointers.

Procedure \(\text{Insert}(t, e) \) {// \(t \) points to root, and \(e \) will be inserted
\[c = \text{NULL}; \] // \((e,c)\) is to be inserted in leaf node
\[\text{Search}(t, e, P, \text{found}); \] // returns \text{found}=true if \(e \) in the tree
\[\quad \text{// and } P \text{ will point to the node in main memory that has } e; \]
\[\quad \text{// Returns false if } e \text{ is not in the B-tree and } P \text{ will point} \]
\[\quad \text{// to the last node visited (leaf node) during the search;} \]
\[\text{Done} = \text{false}; \]
\[\text{if not found} \{ \]
\[\quad \text{while } P \neq \text{NULL} \&\& \text{not Done do} \]
\[\quad \quad \{ \text{Insert } (c, e) \text{ into appropriate position in node } P; \]
\[\quad \quad \quad \text{Let the resulting node be } P \rightarrow n, c_0, (e_1, c_1), \ldots, (e_n, c_n) \]
if P->n <= m-1 {Output P to Disk; Done = true;}
else { e = P->e_{\text{ceil}(m/2)};
 d = \text{ceil}(m/2);
 Split P into two nodes (in main memory)
 P: d-1,c_0,(e_1,c_1),...,(e_{d-1},c_{d-1})
 Q: m-d,c_d,(e_{d+1},c_{d+1}),...,(e_m,c_m)
 Output P and Q to Disk;
 c = Q;
 P = Parent(P); // Parent may be obtained from a
 // stack that is built by the Search procedure;
}
if not Done { Create new node Q in memory;
 Q: 1,t,(e,c);
 t = Q;
 Output t to Disk;
}
Delete Example

D 58

D 65

D 55
D 40
Deletion

Nodes are of the form \(n, c_0, (e_1, c_1), \ldots, (e_n, c_n) \), where the \(e \)'s are the values or keys and the \(c \)'s are the pointers.

Procedure Delete\((t, e)\) {

 // \(t \) points to root, and \(e \) will be deleted

 Search\((t, x, P, \text{found})\); // returns \(\text{found}=\text{true} \) if \(e \) in the tree
 // and \(P \) will point to the node in main memory that has \(e \);
 // Returns false if \(e \) is not in the B-tree and \(P \) will point
 // to the last node visited (leaf node) during the search;
if found {
 Let P point to node n, (e_1, c_1), ..., (e_n, c_n),
 and e_i has value e;
 if P->c_0 != 0 // P is not a leaf node
 { Q = P->c_i; // Reads from Disk P->c_i and
 // stores it in memory node Q
 While Q is not a leaf node do
 Q = Q->c_0; // Reads from Disk P->c_i and
 // stores it in memory node Q
 P->e_i = Q->e_1
 Write P on Disk;
 P = Q;
 i = 1;
 }
}
delete (P->e_i, P->c_i) from
 P: n,c_0,(e_1,c_1),..., (e_n,c_n)
 and replace P->n by P->n-1;
while (P->n < Ceiling(m/2)-1) && (P != t) do
 { if P has a nearest right sibling Y
 {Let Z point to the parent of P and Y;
 Let j be such that Z->c_{j-1} == P && Z->c_j == Y;
 if Y->n >= Ceiling(m/2)
 { // can borrow from right sibling
 P->e_{P->n+1} = Z->e_j; //move from Z to P
 P->c_{P->n+1} = Y->c_0;
 P->n = P->n+1;
 Z->e_j = Y->e_1; //move e_1 from Y to Z
 Y->(n,c_0,(e_1,c_1),...) =>
 Y->(n-1,c_1,(e_2,c_2),...); //e_1 is deleted
 Output nodes P, Z & Y on Disk;
 return;

// Has a right child but cannot borrow from it
r = 2 Ceil(m/2)-2;

// Borrow from parent and combine P and Y into one node
Output (r, P->c_0,(P->e_1,P->c_1),...,
 (P->e_{P->n},P->c_{P->n}),
 (Z->e_j,Y->c_0),
 (Y->e_1,Y->c_1),...,
 (Y->e_{Y->n},Y->c_{Y->n}))

 as new node P;
 Node P is now node Z except that (Z->e_j,Z->c_j) is deleted;
 }
else {do the nearest left sibling instead}
}

if P->n != 0 {Output P onto Disk;}
else { t = P->c_0; }
}
Extensions

- Above material from Horowitz and Sahni Fundamentals of DS (CS Press). But the algorithms were modified by Prof. Gonzalez to be more OO.

- A B'-Tree is like the B-Tree, but the values are at the failure nodes (instead of a null pointer we have a pointer to the data). Internal nodes have keys to direct the search. The Textbook [W] covers B'-Trees, but calls them B-Trees.

- B^*-Tree: The root has at least two children and at most $2\lceil(2m - 2)/3\rceil + 1$. Internal nodes have at least $\lceil(2m - 2)/3\rceil$ and at most m children. (Saves space).