DFS

Void Graph::dfs(Vertex v)
{ v.visited=true;
 for each vertex w adjacent to v do
 if(!w.visited) dfs(w);
}

dfstraversal
{ for every v in G do
 v.visited=false;
 for every v in G do
 if(!v.visited) dfs(v);
}

Time complexity $O(n + e)$, n:# of nodes; e:# of edges.
Since edges are not ordered dfs could be
• **Connectness**: Is there a path between every pair of vertices? True iff only one call from dftraversal.

• **Connected Components**: Partition $G = (V, E)$ into $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, ..., such that every G_i is connected. There are no edges in G joining a vertex in G_i to one in G_j for $i \neq j$. Solution: the nodes and edges visited during the ith dfs call from dftraversal form G_i.

• **Testing if a graph is bipartite**: Testing too see if the vertices in G can be partitioned into two sets S_1 and S_2 such that all the edges join a vertex in set S_1 to one in Set S_2. Next slide shows how dfs solves the problem.
Testing for bipartite graph property via dfs

Backedges
allowed Not allowed

OK
Not biparti graph
DFS directed graphs

Void Graph::dfs(vertex v)
{
 v.visited=true;
 for each vertex w adjacent from v do
 if(!w.visited) dfs(w);
}

dfstraversal
{
 for every vertex v in G do
 v.visited=false;
 for every vertex v in G do
 if(!v.visited) dfs(v);
}

Time complexity $O(n + e)$, n: # of nodes; e: # of edges.
Depth First Search

DFS

Tree Arcs
Back Arcs
Forward Arcs
Cross Arcs
DFS

- **Tree Arcs**: Edges in DF spanning forest
- **Back Arcs**: From a vertex to one of its ancestors in the spanning forest
- **Forward Arcs**: A non-spanning arc that goes from a vertex to a proper descendant.
- **Cross Arcs**: From a vertex to another vertex that is neither an ancestor nor a descendant.
DFS directed graphs

```cpp
void Graph::dfs(vertex v)
{
    v.dfn = count; // line not part of dfs
    count++; // line not part of dfs
    v.visited = true;
    for each vertex w adjacent from v do
        if (!w.visited) dfs(w);
    // When !w.visited is true
    // then (v, w) is a tree edge
    // v.dfn < w.dfn
    // then (v, w) is a forward edge
    // else (v, w) is back or cross edge
}
```

dftraversal
```cpp
count = 1;
for every vertex v in G do
    v.visited = false;
for every vertex v in G do
    if (!v.visited) dfs(v);
```

Time complexity $O(n + e)$, n: vertices; e: edges.
Identification of Arcs

Forward Arcs

\[w.\text{dfnumber} > v.\text{dfnumber} \]

BACK ARCS AND CROSS ARCS

\[w.\text{dfnumber} < v.\text{dfnumber} \]

Recursive call to \(w \) has ended

Recursive call to \(w \) has not ended

cross arcs

Using a mark bit to identify the vertices that are active (in execution stack) one can distinguish between the two cases. \(O(n + e) \) total time complexity.
Construct a total order consistent with partial order

All edges directed from top to bottom.
Void Graph::dfs(vertex v)
{
 ... // at the end add
 print(v);
}

dfs(1)
 dfs(2) 6
 dfs(6) 2
 dfs(3) 5
 dfs(5) 3
 dfs(4) 4
 dfs(7) 1
 dfs(8) 10
 dfs(10) 8
 dfs(9) 9
 7

Reverse the order for a total order consistent with partial order.