Max Heaps

- Each node stores one value, but the values may be repeated (i.e., it is a multiset, rather than a set).

- Complete binary tree (All possible nodes at each level are present except possibly for the last level. All the missing nodes in the last level, if any, are located to the right of the nodes that are present.)

- The value stored at node v is at least as large as the values stored at its children nodes.

\[\text{Heap:} \quad 50 \quad 30 \quad 40 \quad 20 \quad 25 \quad 10\]

\[\text{Not A Heap:} \quad 50 \quad 23 \quad 40 \quad 20 \quad 10 \quad 25 \quad 20\]

\[\text{Not A Heap:} \quad 50 \quad 35 \quad 40 \quad 20 \quad 25 \quad 10\]
template<class T>
class MaxHeap {
 public:
 MaxHeap(int MaxHeapSize = 10);
 ~MaxHeap() {delete [] heap;}
 private:
 int CurrentSize, MaxSize;
 T *heap; // element array
};
template<class T>
MaxHeap<T>::MaxHeap(int MaxHeapSize)
{
 MaxSize = MaxHeapSize;
 heap = new T[MaxSize+1];
 CurrentSize = 0;
}
Height of Heap with n nodes

- Full Binary Tree (no missing nodes).
 - Number of nodes at level 1 is 2^0, at level 2 is 2^1, at level 3 is 2^2, ..., at level h is 2^{h-1}.
 - Therefore, $n = \sum_{i=0}^{h-1} 2^i$
 - So, $n = 2^h - 1$, and $n + 1 = 2^h$.
 - So, $h = \log_2(n + 1)$.
 - Or h is $O(\log n)$.

- Not Full Binary Tree (missing nodes).
 - Fill it up. Number of nodes is $m < 2n$.
 - Therefore, $h = \log_2(m + 1) < \log_2(2n + 1)$.
 - Or h is $O(\log n)$.
Insert x

- Assign x to the next available position.
- If x is greater than the value of its parent then swap them.
- repeat the above operation till you reach the root or it does not hold.
Example for Insert

EMPTY HEAP

Insert 14

Insert 20
Move Up

Insert 2

Insert 15
Move Up
Example for Insert

1. Insert 10:
 - Original heap: 20, 15, 2
 - Insert 10: 15, 10, 2
 - Move Up:
 - 14, 15, 10
 - 20, 14, 10

2. Insert 21:
 - Original heap: 20, 15, 2
 - Insert 21: 15, 20, 21
 - Move Up:
 - 14, 10, 2
 - 15, 10, 20
 - 15, 21, 10

General Idea

Just move them down (instead of swap) and store x in the appropriate place.
template<class T>
MaxHeap<T>& MaxHeap<T>::Insert(const T& x)
{// Insert x into the max heap.
 if (CurrentSize == MaxSize)
 throw NoMem(); // no space

 // find place for x
 // i starts at new leaf and moves up tree
 int i = ++CurrentSize;
 while (i != 1 && x > heap[i/2]) {
 // cannot put x in heap[i]
 heap[i] = heap[i/2]; // move down
 i /= 2; // move to parent
 }

 heap[i] = x;
}

Time Complexity is $O(\log n)$.
Deletion

• Copy the value in the root and that is what will be returned.

• Move the last element to the root.

• If one of its children has a larger value, then move it to the child with largest value.

• Repeat the above until you reach a leaf or the above condition does not hold.
DeleteMax

Move Down

DeleteMax

Move Down

Move Down

Move Down
template<class T>
MaxHeap<T>& MaxHeap<T>::DeleteMax(T& x)
{
 if (CurrentSize == 0)
 throw OutOfBounds(); // empty
 x = heap[1]; // max element
 T y = heap[CurrentSize--]; // last element
 int i = 1, // current node of heap
 ci = 2; // child of i
 while (ci <= CurrentSize) {
 if (ci < CurrentSize &&
 heap[ci] < heap[ci+1]) ci++;
 // can we put y in heap[ci]?
 if (y >= heap[ci]) break; // yes
 // no
 heap[i] = heap[ci]; // move child up
 i = ci; // move down a level
 ci *= 2; }
 heap[i] = y;
}

Time Complexity is $O(\log n)$.
Heap Initialization (vs \(n \) Sequential Inserts)

- By inserting one at a time takes \(O(n \log n) \) time (actually \(\Omega \) too).
- New procedure (making the heap bottom-up) takes \(O(n) \) Time.

Time Complexity

At level \(j \) there are \(2^{j-1} \) vertices and making that subtree a heap takes \(h - j \) operations (assume complete tree).

\[
T(n) = \sum_{j=1}^{h} 2^{j-1}(h - j)
\]
\[T(n) = \sum_{j=1}^{h} 2^{j-1}(h - j) \]
\[= \sum_{i=0}^{h-1} 2^{h-1-i}(i) \]
\[= 2^{h-1} \sum_{i=0}^{h-1} \frac{i}{2^i} \]
\[= 2^{h-1} \cdot \frac{2^h - 1 - h}{2^{h-1}} \]
\[= 2^h - h - 1 \]
\[= O(n) \]
template<class T>
void MaxHeap<T>::Initialize(T a[], int size,
 int ArraySize)
{
 delete [] heap;
 heap = a;
 CurrentSize = size;
 MaxSize = ArraySize;
 for (int i = CurrentSize/2; i >= 1; i--)
 {
 T y = heap[i]; // root of subtree
 int ci = 2*i; // parent of c is target
 // location for y
 while (ci <= CurrentSize) {
 // heap[ci] should be larger sibling
 if (ci < CurrentSize &&
 heap[ci] < heap[ci+1]) ci++;
 // can we put y in heap[ci]?
 if (y >= heap[ci]) break; // yes
 // no
 heap[ci/2] = heap[ci]; // move child up
 ci *= 2; // move down a level }
 heap[ci/2] = y;
} }
Other Operations

- Decrease Value $O(\log n)$.
- Increase Value $O(\log n)$.
- Delete element (if you know its position) $O(\log n)$.
- Delete element (if you do NOT know its position) $O(n)$.
Ternary Heaps (d-heaps with d=3)

Height is $\log_3 n$
Matching Heaps

Max

Min

27

15

18

15

18

27
Min-Max Heaps

Min
Max
Min
Max
...

[Diagram of a Min-Max heap with nodes labeled Min and Max]

[Diagram of a Min-Max heap with nodes labeled Min and Max]
Dotted arrow $a \rightarrow b$ means that $a \leq b$.