Leftist Trees

- Linked binary trees.
- Insert and DeleteMin (or Delete Max) takes $O(\log n)$ time.
- Can Meld (Merge) two leftist trees in $O(\log n)$ time.
Extended Binary Trees

(Add external nodes)
W() Weight Function

\(W(x) \): For any node \(x \), \(W(x) \) is the total number of (internal) nodes in the subtree rooted at \(x \) (including \(x \)).
Computing $W(x)$

$$W(x) = \begin{cases}
0 & \text{if } x \text{ is an external node} \\
W(lc(x)) + W(rc(x)) + 1 & \text{o.w.}
\end{cases}$$

where lc (rc) represents leftchild (rightchild).
Weight-Biased Leftist Trees (WBLT)

- A Binary tree is a WBLT
- iff
- for every internal node x,
 \[W(lc(x)) \geq W(rc(x)) \]
Property of WBLTs

- A shorthest root to external node path has length $O(\log W(\text{Root}))$.
- The rightmost path has this length.
A Min WBLT that satisfies the “Min Heap ordering” is a Min WBLT.

The Insert, DeleteMin and Meld operations can be performed in $O(\log n)$ time.
Insert Operation

Insert x in WBLT H is just $\text{MELD}(x, H)$

Insert x with value 8 ⇒ Meld H and the single node WBLT x with value 8
DeleteMin Operation

DeleteMin from WBLT H is just $\text{MELD}(\text{lc}(H), \text{rc}(H))$

Delete Min \Rightarrow Merge(lc(Root),rc(root))
Meld Two WBLTs

Traverse rightmost paths. See example beginning next page.
MELD TWO WBLT
PASTE BACK IN B

PASTE BACK IN A

Swap Lecture

Resulting WBLT