NP-Complete Problems

- Computationally Difficult Problems
- There is no KNOWN efficient algorithm to solve any of these problems. (e.g., $O(n)$, $O(n^4)$, $O(n^{100})$, $O(n^{1000})$, ...). Therefore, problems are computationally difficult even under this relaxed notion of “efficient” algorithms.
- It is conjectured that no efficient algorithm exists to solve any of these problems
- (Efficient algorithm = worst case time complexity is polynomial wrt the input length).
Intractability

• Intractability is Independent of the Encoding (reasonable encodings) E.g., Adjacency matrix or adjacency lists.

• Intractability is Independent of the Computer Model (as long as it is a reasonable model). Holds for “reasonable” models, e.g., parallel machine with a fixed number of processors.
FOUNDATIONS

- Stephen Cook: “The Complexity of Theorem Proving Procedures”.
 - Polynomial time reducibility.
 - Focussed attention to the class of Decision Problems NP.
 - Showed that Satisfiability is the hardest problem in NP.
 - Suggested other problems in NP share this property (e.g., clique).

- Richard Karp
 - “Reducibility among Combinatorial Problems”.
 - Showed that other problems in NP are as hard as Satisfiability. (equivalence class of “hardest” problems in NP or the class of NP-complete problems). E.g., Knapsack, Traveling Salesperson, Graph Coloration, etc.
NP-Complete (and NP-hard) Problems

- Scheduling
 - One machine with release dates and deadlines.
 - Parallel machines to minimize $\max\{f_i\}$.
 - Open Shops, Flow Shops, Job Shops, etc.

- Mathematical Programming
 - Integer Programming
 - Quadratic Programming
 - Traveling Salesperson
 - Knapsack
 - Flow Problems

- Games
 - NxN Checkers and NxN GO
 - Generalized HEX
 - Generalized Geography
 - Generalized Tetris
• Automata Theory and Formal Languages
 – Finite Automata Inequivalence
 – Regular Expression Inequivalence
 – Finite Automata Intersection
 – Non-LR(k) CFG
 – Context-Sensitive Lang rec.

• Code Generation
 – Code Generation (one register machine)
 – Code Generation (Parallel Assignment)
 – Micro-code bit Optimization
 – Minimizing + in expressions
 – Minimizing + and * in expression

• Programs
 – Inequivalence of Programs (with arrays)
 – Inequivalence of Programs (with assignments)
• Other
 – Deadlock Detection
 – Deadlock Recovery
 – Database Design Problems
 – Data Compression
 – File Allocation
 – Dynamic Storage Allocation
 – Bin Packing
 – Graph Problems
 – Min Page Faults with Complete Information
 – Clustering Problems
 – Wire Routing Problems
 – Via Assignment Problems
 – PLA Folding
 – Placement Problems
 – Robot Motion Planning
 – ETC.
FORMAL DEVELOPMENT

- Restrict to Decision Problems (for convenience).
- A Decision Problem π consists of set D_{π} of instances, and set $Y_{\pi} \subseteq D_{\pi}$ of yes-instances.
Problem Specification

- **Subgraph Isomorphism**
 - Instance: Two graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$.
 - Question: Does G_1 contain a subgraph isomorphic to G_2, i.e., a subset $V' \subseteq V_1$ and, a subset $E' \subseteq E_1$ s.t. $|V'| = |V_2|$, $|E'| = |E_2|$, and there exists a 1 - 1 function $f : V_2 \rightarrow V'$ satisfying $u, v \in E_2 \Leftrightarrow f(u), f(v) \in E'$?

- **Traveling Salesperson**
 - Instance: A finite set $C = \{c_1, c_2, ..., c_n\}$ of cities, a distance $d(c_i, c_j) \in Z^+$ for each pair of cities $c_i, c_j \in C$, and a bound $B \in Z^+$
 - Question: Is there a “tour” of all the cities in C having a total length no more than B, i.e., an ordering $(c_{\pi_1}, c_{\pi_2}, ..., c_{\pi_n})$ of C s.t. $\sum_{i=1}^{n-1} d(c_{\pi_i}, c_{\pi_{i+1}}) + d(c_{\pi_n}, c_{\pi_1}) \leq B$?
Decision Problems and the Class P

- Decision problem is not harder than the corresponding optimization problem.
- So, showing that the decision problem is NP-complete \Rightarrow the corresponding optimization problem is as hard as the decision problem.
- Class P: Set of all decision problems that can be solved in polynomial time with respect to (wrt) the input size.
NonDeterministic Computations

• POLY TIME VERIFICATION FOR TSP
 – Suppose one claims that $I \in Y_\pi$.
 – To prove the claim we need a “valid” tour.
 – The truth or falsity of the claim can be verified by computing the cost of the tour and comparing it to B.
 – This can be done by an algorithm operating in poly time wrt length(I).

• Is Poly time verification \neq Poly time solvability?

• We do not know? Any conjectures?

• YES
Class NP

- NP: Set of all decision problems that can be verified in polynomial time. I.e., we can verify a “yes” answer in polynomial time.

- If $P \neq NP$, P is Poly and $NP - P$ is intractable
Polynomial Transformation

- Polynomial Transformation ($L_1 \alpha L_2$).
- A poly transformation from problem P_1 to problem P_2 is a function f that transforms any instance of I_1 of P_1 into an instance I_2 of P_2 such that
 - function f can be computed in polynomial time wrt size of I_1
 - I_1 is a “yes” instance of P_1 iff I_2 is a “yes” instance of P_2.
Example

- Hamiltonian Circuit
 - Instance: \(G = (V, E) \)
 - Does \(G \) contain a HC, i.e., simple circuit that includes all vertices?

- \(HC \propto TSP \)

- Given \(G = (V, E) \) with \(n = |V| \), define \(G' \) as
 - \(v_i \to c_i \) and complete (all edges present) if \(\{v_i, v_j\} \in E \) then \(d\{c_i, c_j\} = 1 \), o.w. 2. \(B \) is \(n \)

\[\]

- \(f \) takes deterministic polynomial time
- \(G \) contains a HC \(\Leftrightarrow \) there is a tour in \(G' = f(G) \) with length \(\leq B \)
NP-Complete

- L is NP complete if $P_1 \in NP$, and $P_2 \preceq P_1$, for every $P_2 \in NP$.
- “Hardest problem in NP” if $P \neq NP$ and π is NP-complete then $\pi \in NP - P$.
- Equivalently If $P_2 \in NP$, P_1 is NP-complete and $P_1 \preceq P_2$, then L_2 is NP-complete.
Satisfiability

- Boolean Variables: $X = x_1, x_2, ..., x_n$.
- Truth assignment function $t : X \rightarrow t, f$.
- x and \bar{x} are literals over X.
- Clause over X: Set of literals over X, e.g., x_1, \bar{x}_3, x_8 ("disjunction of literals").
- Clause is satisfied \iff at least one member is true.
- A collection C of clauses over X is satisfied \iff There exists a truth assignment for X that satisfies all clauses in C.
- Satisfiability (SAT)
 - Instance: A set U of variables and collection C of clauses over U.
 - Question: Is there a satisfying truth assignment for C?
Examples

• $x_1, x_2, x_3, x_4, x_5, x_6$.

• $\{x_1, x_2, x_3\}, \{x_2, x_3, \bar{x}_4\}, \{x_4, x_5, x_6\}, \{x_1, x_3, x_5\}$

• Satisfiable ($x_1 = T, x_2 = T, x_4 = T$).

• x_1, x_2, x_3, x_4.

• $\{x_1, x_2, x_3\}, \{\bar{x}_1, \bar{x}_2, x_4\}, \{x_1, x_3, \bar{x}_4\}, \{x_1, x_2, x_4\}$

• Satisfiable ($x_1 = T, x_4 = T$).

• x_1, x_2, x_3.

• $\{x_1, x_2, x_3\}, \{x_1, x_2, \bar{x}_3\}, \{x_1, \bar{x}_2, x_3\}, \{x_1, \bar{x}_2, \bar{x}_3\}$

• $\{\bar{x}_1, x_2, x_3\}, \{\bar{x}_1, x_2, \bar{x}_3\}, \{\bar{x}_1, \bar{x}_2, x_3\}, \{\bar{x}_1, \bar{x}_2, \bar{x}_3\}$

• Not Satisfiable.
Cook’s Theorem

- Theorem: SAT is NP-complete.