Single Source Shortest Paths

- Given an edge weighted (non-negative weights) directed graph G and a vertex s in G, find shortest (least distance or cost) paths from vertex s to all the other vertices in the graph.
- Every edge has a non-negative weight.
- The cost or distance of a path is the sum of the weight of the edges in the path.

Our algorithms finds shortests paths in increasing order of their cost (or distance).
Example

s is 1

Vertex	Cost of SP	SP
1 | 0 | 1
3 | 2 | 1 → 3
4 | 3 | 1 → 3 → 4
2 | 4 | 1 → 2
5 | 6 | 1 → 3 → 4 → 5
Ideas Behind Algorithm

Our algorithm computes the cost or distance of a shortest path and leaves a pointer to the parent of each node in a shortest path.

Greedy Criterion: (At each iteration) From all the vertices to which a shortest path from \(s \) has not yet been found, select one that results in a least cost (distance) path.
Iteration Invariant

- At each iteration the algorithm has computed the distance (or cost) of a shortest path from vertex \(s \) to every vertex in a set of vertices called \(S \) (initially \(S = \{s\} \)).

- A shortest path from \(s \) to a vertex that is not in \(S \) has distance (cost) that is at least as large as the distance of any shortest path from \(s \) to a vertex in \(S \).

- Every vertex has a value called \text{dist}. For a vertex \(v \) in \(S \), \text{dist} is the distance of a shortest path from \(s \) to \(v \).

- For every vertex \(v \) that is not in \(S \), \text{dist} is the distance of a shortest path from vertex \(s \) to vertex \(v \) that can only visit vertices in \(S \) as intermediate vertices.
• Let v be a vertex that is not in S with smallest dist value. We claim that a shortest path from s to v that may visit any vertex in G as an intermediate vertex has distance equal to $v->\text{dist}$.

• This claim follows from the fact that any path from s to v that visits other vertices that are not in S has distance that is not smaller than $v->\text{dist}$ as the weight of each edge cannot be negative.

For example ...

Path $s - x - d - v$ is shorter than path $s - a - b - c - d - v$
class Vertex{

private:
 int dist; // Distance of the currently best path from s to v.
 bool known; // True if a path with distance dist is a shortest path from s to v.
 int id; // Vertex id.
 Vertex *path; // Pointer to the predecessor of v in the current best path from s to v.
Class Vertex (Cont‘)

```cpp
public:
    Vertex( int i) {
        dist = 10000; known = false;
        id = i; path = Null;}

    int get_dist() {return dist;}
    void set_dist(int val) {dist=val;}
    bool get_known() {return known;}
    void set_known(bool val) {known=val;}
    vertex get_path() {return path;}
    void set_path(Vertex *v) {path=v;}
    printPath();
};
```
v is set to 1
Set "known" for vertex 1 to True
v is set to 4
Set known for vertex 4 to True

v is set to 2
Set "known" for vertex 2 to True
v is set to 3
Set "known" for vertex 3 to True

v is set to 5
Set "known" for vertex 5 to True

<table>
<thead>
<tr>
<th>vertex</th>
<th>known</th>
<th>dist</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
<td>Null</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>10000</td>
<td>Null</td>
</tr>
</tbody>
</table>
v is set to 6

Set "known" for vertex 6 to True
Recovering Shortest Paths

Reversed tree of Shortest paths (v→path)

void Vertex::printPath()
{
 if (path != Null)
 {
 path->printPath();
 cout << " to " ;
 }
 cout << this.id; }

v->printPath Prints
------- ------
 1 1
 2 1 to 2
 3 1 to 4 to 3
 4 1 to 4
 5 1 to 2 to 5
 6 1 to 2 to 5 to 6
Algorithm

void Graph::Dijkstra(Vertex *s)
{
 Vertex *v, *w;
 Edge *e;
 // We use e->COST() to return the cost of the
 // edge e from vertex v->id to vertex w->id
 s->set_dist(0);
for(; ;)
{
 if (all vertices have the "known" field set to true) exit;
 // let v to an "unmarked" vertex with smallest v->dist, i.e.
 // from all the vertices with the "known" field false
 // vertex v has least "dist" value.
 d = MIN { y->dist() | !(y->get_known()) and y is a Vertex}
 v = Element of { y | !(y->get_known()) && y->get_dist() is equal
 v->set_known(true);
 for each edge e incident from v do
 {
 Assume that edge e is directed from v->id to w->id
 if (!w->get_known)
 if (v->get_dist() + e->COST() < w->get_dist())
 { // update w //
 w->set_dist(v->get_dist() + e->COST())
 w->set_path(v);
 } } } } }
Graph G is represented by adjacency lists (n vertices and m edges)

- Implementation using the code provided
 - Find min takes $O(n)$ time. Repeated n times $\rightarrow O(n^2)$.
 - Update dist takes $O(1)$. Repeated m times takes $O(m)$.
 - Therefore, total time is $O(n^2 + m)$.

- Implementation using a heap for dist of vertices with “known” value true
 - Find min takes $O(\log n)$ time. Repeated n times $\rightarrow O(n \log n)$.
 - Update dist takes $O(\log n)$. Repeated m times takes $O(m \log n)$.
 - Therefore, total time is $O(m \log n)$.

- Can be implemented to take $O(m + n \log n)$ time using Fibonacci Heaps (CMPSC 230).