
CS 60
Programming Assignment #8

Due Date: June 1, 2010 (5:00 pm) 80 Points.
Remember: Points will be deducted if turned in after the Due Date.

Deadline: June 2, 2010 (5:00 pm)
Remember: No homework will be accepted after the Deadline

You must work on this assignment independently.

For this assignment you will write a C++ program to manipulate a sorted singly-linked
list similar in nature to the program in http://www.cs.ucsb.edu/∼teo/cs60.s10/prog/l2.C
The l2.C program just creates singly-linked sorted lists and it is organized in one file. The
program you will write for this assignment should be stored in different files. The main
difference between the code you will write and the one in l2.C is that instead of having a
sorted linked list of objects of the same type, now you will have a sorted linked list of nodes
that are objects of Class ListNode, DListNode (Derived) and SDListNode (Second Derived).
Below you will find declarations for these classes and you must add appropriate member
functions to them. At least a couple of the member functions in the ListNode Class must
be virtual (besides function whoami()).

#ifndef LISTNODE_H

#define LISTNODE_H

#include <iostream>

// Definition of Class ListNode

class ListNode {

protected: // Each object contains two values

int data;

ListNode *link;

public: // These are the member functions for the Class ListNode

virtual int whoami() {return 1;}

};

#endif //LISTNODE_H

#ifndef DLISTNODE_H

#define DLISTNODE_H

#include <iostream>

// Definition of Class DListNode

class DListNode : public ListNode {

protected: // Each object contains two values

int ddata;

public: // These are the member functions for the Class DListNode

1



int whoami() {return 2;}

};

#endif //DLISTNODE_H

#ifndef SDLISTNODE_H

#define SDLISTNODE_H

#include <iostream>

// Definition of Class SDListNode

class SDListNode : public DListNode{

protected: // Each object contains two values

int sddata;

public: // These are the member functions for the Class SDListNode

int whoami() {return 3;}

};

#endif //SDLISTNODE_H

The Class List (similar to the one in l2.C) will contain as data one pointer to ListNode
(ListNode *first;). The list will never contain two ListNodes with the same data; or two
DListNodes with the same data and ddata; or two SDListNodes with the same data, ddata
and sddata. The list will be sorted in ascending order of the data attribute of each object.
There will be at most one ListNode, but there may be several DListNodes and SDListNodes,
with the same data attribute. In this case we put the ListNode before all the DListNodes and
SDListNodes (with the same data value). These DListNodes and SDListNodes (with same
data value) are sorted in ascending order of the ddata attribute. There may be at most one
DListNode, but there may be several SDListNodes, with the same data and ddata values. In
this case we put the DListNode (with the same data and ddata) before all the SDListNodes.
These SDListNodes, with same data and ddata values, are sorted in ascending order of the
sddata attribute. But there may be at most one DListNodes with the same data, ddata
sddata attributes. The example we give below illustrates the ordering (left-to-right and then
top-down)

(4), (4 5), (4 7), (4 7 2), (4 7 5), (4 8), (5 1), (5 3 4), (5 4 3), ...,

(6), (8 3 4), (8 4), (9 6), (9 7), (10)

The above Class declarations, which are also given in the map.html web page, will help
you get started. You may use any part(s) of that code in your homework.

Your main program will read in a set of commands to manipulate the lists with the
different types of objects. In the map.html web page you will find a skeleton code that
shows how to read in the data (you may use this code, but note that you need to add a
few things to make it work). You will also find in the map.html page a sample input and
output file. Your output format should mimic the sample output file. You should write a

2



constructor that will initialize a list to empty. In this assignment you will manipulate 9
different lists (named 1, 2 ... 9). The command lines are given below. You must print every
command line just after you read it. By i1, i2, and i3 below we mean that you should
expect a positive integer for each of them. By j and k we mean DIFFERENT integers in the
range 1, 2, ..., 9. Initially each of these lists is empty. i.e., the nine lists have zero elements.

• insert j base i1

You will add a ListNode object with data value i1 to the list j. If the list j already
contains a ListNode object with data value i1, then the operation will do nothing.
The list should be sorted as specified above.

• insert j der i1 i2

You will add a DListNode object with data value i1 and ddata value i2 to the list j.
If the list j already contains a DListNode object with data value i1 and ddata value
i2, then the operation will do nothing. The list should be sorted as specified above.

• insert j sder i1 i2 i3

You will add an SDListNode object with data value i1, ddata value i2, and sddata

value i3 to the list j. If the list j already contains a SDListNode object with data

value i1, ddata value i2, and sddata value i3 then the operation will do nothing.
The list should be sorted as specified above.

• delete j base i1

You will delete the ListNode object with data value i1 from the list j if it exists. If it
is not in the list j the operation will do nothing.

• delete j der i1 i2

You will delete the DListNode object with data value i1 and ddata value i2 from the
list j if it exists. If it is not in the list j the operation will do nothing.

• delete j sder i1 i2 i3

You will delete the SDListNode object with data value i1, ddata value i2, and an
sddata value i3 from the list j if it exists. If it is not in the list j the operation will
do nothing.

• member j base i1

You will print true if the ListNode object with data value i1 is in the list j, otherwise
print false.

• member j der i1 i2

You will print true if the DListNode object with data value i1 and ddata value i2 is
in the list j, otherwise print false.

3



• member j sder i1 i2 i3

You will print true if the SDListNode object with data value i1, ddata value i2, and
an sddata value i3 is in the list j, otherwise print false.

• compute j i1

This command computes and prints the total value of the list j. The total value of
the list j is the sum of the values of the nodes in the list j. The value of a node of the
list j is computed as follows. For a ListNode its value is i1 times its data value. For
an DListNode its value is (i1+5) times its data value plus i1 times its ddata value.
For an DListNode its value is (i1+7) times its data value plus (i1+2) times its ddata
value plus (i1+4) times its sddata value.

• print j

This will print the whole list j in the order it appears. For each object in the list
j it prints the Class of object it is and then all its values (i.e., the data value for a
ListNode; the data value and ddata value for a DListNode; and the data value, the
ddata value, and sddata value for an SDListNode.

• join j k

Move all the elements in list k to list j. Note that list k will be empty after this
operation. Note that after the operation list j should not have repeated elements.

• quit

Your program must delete all the objects your program has created and end.

You may assume that each input line is of the form indicated above.

You may also assume that there is a \n after the last character in each line, and

there are no other blanks (or symbols) in the input. See the sample

input file in the class web page.

You must have a different function for each of the commands and you must use several
virtual functions.

You must have a .H file and a .C files for each class, plus there must be a main program.
You must use a makefile.

Turnin electronically to hw08@cs60. You must include all your .H, .C, makefile and and
the student.id file.

There is an example in the map.html web page.

4


