
CS 60
MID-TERM EXAM (TYPE A)

May 18, 2010
WRITE ALL YOUR ANSWERS ON SPACE PROVIDED.
ANSWER ALL QUESTIONS. TOTAL POINTS ARE 100.

ONLY STUDENTS THAT ARE REGISTERED FOR THIS COURSE
MAY TAKE THIS EXAM.

NAME:

1 { Circle for each part True or False depending whether

or not the statement is true or false. Each one is

worth 1 point}

• { True or False } If we have a Class called Base (with several member variables), then
the line Base b(4); invokes the copy constructor for that class.

• { True or False } If we have a Class called Base, then the line Base f(b); invokes the
copy constructor for that class if b is an object of Class Base.

• { True or False } The destructor for the Class X is invoked only when an object for
Class X was created dynamically (through new), but not when it is a local auto variable
in a function.

• { True or False } If we have a Class called Base, then the line Base *h = new Base;

invokes the assignment operator for Class Base.

• { True or False } If we have a Class called Base, executing the statement Base *j =

new Base[5]; and later on executing the line delete[];, causes the destructor for
Class Base to be invoked five times.

• { True or False } When overloading + for the class CL, the operator + may be used for
expressions of the form a + b, but not for expressions of the form a + b + c, where
a, b, and c are objects of class CL.

• { True or False } In C++ every function needs to be a member function of at least
one Class.

• { True or False } Class constructors can be virtual.

• { True or False } Class destructors can be virtual.

• { True or False } The function new returns a pointer to a block of memory all of which
has been initialized to zero.

• { True or False } The memory allocated through new is in the area of memory called
a Heap.

1

• { True or False } In C++ we are allowed to pass a struct to a function, and a function
can return a struct.

• { True or False } When overloading == for a Class the two objects being compared
must belong to the same class.

• { True or False } In C++ every Class must have a copy constructor and assignment
operator (operator=) defined by the user.

• { True or False } The inline function inline float square(float x) {return x*x;}
computes the square of the argument correctly when used in float y = square(5.0);

but not when float y = square(4.5 + 7.5); is invoked because * has higher prece-
dence than +.

• { True or False } To use gdb on the program gdbfile.cpp we should compile it with
the command g++ -d gdbfile.cpp.

2 Quick Questions

(a) [3 points] How do you implement an #include guard? (I.e, what lines are added to the
file?)

(b) [2 points] What will this C code segment print out:

int x = 0010;

printf("The answer is %d\n", x);

(c) [4 points] Name the four functions that are automatically created for you when you define
a C++ class (if you don’t define them yourself).

(d) [2 points] What is the value of rx after this code is executed:

int x = 50;

int &rx = x;

rx += 50;

2

(e) [4 points] What does the following code print?

#include <iostream>

using namespace std;

int main(void)

{

int y=2;

int i=6;

int *pi=&i;

int **ppi=π

pi = &y;

cout << *pi << " " << **ppi << endl;

pi = &i;

cout << *pi << " " << **ppi << endl;

}

(f) [4 points] For the code given below clearly indicate what the cout command prints.

#include <iostream>

using namespace std;

int main(void)

{int *p = new int[3];

p[0] = 20; p[1] = 41; p[2] = 55;

cout << p[0] << " " << p[1] << endl;

p++;

cout << p[0] << " " << p[1] << endl;

p--;

delete [] p;

}

3

3 More Questions

(a) [2 points] Write C++ code in procedure func to assign to variable y in mygvar the value
of parameter y (in func).

namespace mygvar {

int x;

int y;

}

void func(int y)

{ // Write code to assign to variable y in mygvar the value of

// parameter y (in func).

}

(b) [6 points] What is the printed output when executing the following C++ code?

#include <iostream>

using namespace std;

class Base

{

public:

Base() { cout << "Base\n"; }

void bar() { cout << "Base::bar()\n"; }

virtual void foo() { cout << "Base::foo()\n"; }

};

class Derived : public Base

{

public:

Derived() { cout << "Derived\n"; }

void bar() { cout << "Derived::bar()\n"; }

void foo() { cout << "Derived::foo()\n"; }

};

int main(void)

{

Derived d;

Base b1 = d;

Base *b2 = &d;

b1.bar();

b1.foo();

b2->bar();

b2->foo();

}

4

(c) [6 points] What does the following C++ code print in the standard output?

#include <iostream>

using namespace std;

void XX(int &, int &, int);

void YY(int &, int);

int main()

{int a, b, c;

a = 3; b = 2; c = 1;

XX(a,b,c);

cout << "Main: a: " << a << " b: " << b << " c: " << c << endl;

XX(c,b,a);

cout << "Main: a: " << a << " b: " << b << " c: " << c << endl;

}

void XX(int & a, int &b, int c)

{

YY(a,b);

cout << "XX: a: " << a << " c: " << c << endl;

YY(c,c);

cout << "XX: c: " << c << " b: " << b << endl;

return;

}

void YY(int & x, int y)

{

x = x + y;

y = 1 * y + 3 * x;

}

5

(d) [8 Points] What does the following program residing in three files print when it is compiled
(g++ qa.C qb.C qc.C) and then it is executed. The three files are:
This is file qa.C

#include <iostream>

using namespace std;

int xcount= 0 ;

int main()

{ void xxx(int);

int yyy(void);

xcount = 24;

cout <<"Main " << xcount << endl;

xxx(2);

cout <<"Main " <<xcount << endl;

xxx(yyy());

cout <<"Main " <<xcount << endl;

yyy();

cout <<"Main " <<xcount << endl;

return 0;

}

This is file qb.C

#include <iostream>

using namespace std;

static int xcount = 0;

void xxx(int n)

{ cout << "Value to be displayed is " << n << endl;

cout <<"xxx " << ++xcount << endl;

}

This is file qc.C

#include <iostream>

using namespace std;

extern int xcount;

int yyy(void)

{ cout <<"yyy " << ++xcount << endl;

{static int xcount = 0;

cout <<"yyy in " << ++xcount << endl;;

}

return 4;

}

6

(e) [4 points] What does the following code print in the standard output?

#include <iostream>

using namespace std;

int main()

{

int X(int n,int m=5); // <---

int x = X(5,9);

x = X(X(9),X(4));

}

int X(int n, int m = 5)

{static int x = 0;

x++;

cout << x << " " << n << " " << m << endl;

return n-m;

}

(f) [2 points] Now change the program so that the line with the “arrow comment” is changed
to

int X(int n,int m=4); // <---

Does the program print exactly the same output? Why or why not?

7

(g) [5 Points] Consider the following code that uses class L defined below. What does the
program print? Were there any memory leaks? Why or why not?

#include <iostream>

using namespace std;

class L

{private: int i;

int *j;

public:

L(int a, int b) { i=a; j = new int; *j = b;}

~L() {delete j;}

void prints() { cout << i << " " << *j << endl;}

};

int main()

{ L p(4,8);

L * q = new L(2,7);

p.prints();

q->prints();

p = *q;

delete q;

p.prints();

}

8

4 C Code

(a) [10 points] Write a member function Countit() for the Class ListNode to count and
return the number of nodes in the Singly-linked list that is linked through the pointer next.
When this function is invoked initially pointer this will point to the first element in the list.

class ListNode {

private:

ListNode *next;

int val;

public: ...

};

9

(b) [22 Points] In class we discussed a procedure similar to the following one to add an
element to an ordered list in such a way that the values stored in the list are sorted (from
smallest to largest). In this case the list has a header node (which is a node type struct

list. If the element to be inserted is in the list, then it will remain unchanged. Now modify
the procedure so that when the element to be inserted is in the list instead of doing nothing,
it deletes the element from the list and deletes the next element from the list (if it exists).
All other cases are the same as before.

typedef struct list{

int val;

struct list* next;

} List;

void addit(List *header, int w)

{ List *ptr,*temp;

ptr=header;

while(ptr->next != NULL)

{if (ptr->next->val > w) break;

if (ptr->next->val == w) return;

ptr= ptr->next;

}

temp= (List *) calloc(1,sizeof(List));

temp->next=ptr->next;

temp->val=w;

ptr->next=temp;

}

10

