
CS 60

Third QUIZ

July 9, 2009

WRITE ALL YOUR ANSWERS ON SPACE PROVIDED.

ANSWER ALL FOUR QUESTIONS. TOTAL POINTS IS 33.

NAME:

1 { Circle for each part True or False depending whether

or not the statement is true or false. Each question

is worth 1 Point}

• { True or False } The body of the for statement for(i = 0; i < 0; i++) is executed
zero times.

• { True or False } The String type in C does not exist.

• { True or False } When x is declared as an integer, then the value of x is 2 after
executing the statement x = (5 == 3);

• { True or False } By big-endian we mean that the most significant byte has the largest
address byte.

• { True or False } The dynamically allocated variables in C are located in an area of
memory which in C is called the Heap.

• { True or False } The local variable in C are located in an area of memory which in
C is called the Heap.

• { True or False } The Global and static variables in C are located in an area of memory
which in C is called the Heap.

• { True or False } A structure (struct) in C is an object consisting of two named
members of identical types.

• { True or False } The function calloc returns a pointer to a block of memory all of
which has been initialized to zero.

• { True or False } A structure (struct) in C may contain inside it a union (union),
and a union (union) may contain a structure (struct) inside it.

2 {Pointers}

(a) [3 points] Briefly explain what happens when the command pi = &yyy; is executed.
What does the following code print?

1

int xxx = 12;

int yyy = 30;

int *pi = &yyy;

*pi = 31;

pi = &xxx;

printf("%d\n",*pi); -> 12

pi = &yyy;

*pi 32;

printf("%d %d\n",xxx,yyy); -> 12 32

The adrees of yyy is stored in pi

(b) [3 points] Briefly explain what happens when the command *pi = xxx; is executed.
What does the following code print?

int xxx = 13;

int yyy = 15;

int *pi = &xxx;

*pi = xxx;

printf("%d\n",*pi); -> 13

*pi = 52;

printf("%d %d\n",xxx,yyy); -> 52 15

The memory location pointed at by pi gets the value stored at xxx.

(c) [2 points] Briefly explain whether or not the following code generates a segmentation
fault. Why or why not? Assume it is the whole program to be run in one of our CSIL
machines.

int main();

{int *pn;

pn = (int*) malloc(sizeof(int))

while(pn)

{ pn = (int*) malloc(sizeof(int));

*pn = 5; -> Segmentation fault

}

}

2

(d) [2 points] Briefly explain whether or not the following while loops forever (which is the
whole program to be run in one of our CSIL machines)? Why or why not?

int main();

{

int *pn;

pn = (int *) malloc(sizeof(int));

while(pn)

{

pn = (int *) malloc(sizeof(int)); -> Infinite Loop

*pn = 5;

free(pn);

}

}

3 {More Questions}

a.- [2 points] For the code given below clearly indicate what the printf command prints.

int x,y,a,b;

a = 8;

x = ++a;

b = 4;

y = b++;

printf("%d %d %d %d\n", a, b, x, y); -> 9 5 9 4

b.- [3 points] For the code given below clearly indicate what the printf command prints.

{int *p = (int *) malloc(3*sizeof(int));

p[0] = 18; p[1] = 15; p[2] = 65;

printf("%d\n", p[0]); -> 18

p--;

printf("%d %d\n", p[1], p[2]); -> 18 15

p++;

printf("%d %d\n", p[1], p[2]); -> 15 65

free(p);

}

3

4 {More Questions}

a.- [4 points] For the code given below clearly indicate what the printf command prints.

{

int a;

int b;

int *c =&b;

int *d =&a;

a = 3; b = 2; *c = 5; *d = 1;

if (a == b) printf("%d\n", a);

else printf("%d\n", b); -> 5

if (b/3 == *d) printf("%d\n", a); -> 1

else printf("%d\n", b);

if (*c < *d) printf("%d\n", a);

else printf("%d\n", b); -> 5

if (b = a) printf("%d %d\n", a,b); -> 1 1

else printf("%d %d\n", a,b);

}

4

b.- [4 Points] Below you will find two procedures that are stored in different files which are
compiled with the command gcc proc.c func.c. Clearly indicate the value(s) they print
when we execute the a.out executable generated by the above gcc command.

proc.c

#include "stdio.h"

int func(int, int);

int globX = 70;

extern int globCount;

int main(void)

{

int x=7, y=5, z;

z = func(y,x);

printf("%d %d %d\n",z,globX,globCount); -> 106 71 19

z = func(globX,globCount);

printf("%d %d %d\n",z,globX,globCount); -> 1421 72 18

}

func.c

int globCount = 20;

extern int globX;

int func(int a, int b)

{

globCount--;

globX++;

return(a*b + globX);

}

5

