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CS 60
Lecture 10: Memory

→ Memory
→ Reading [KR] Chapters 1 – 7.



2

Memory

• Before we talk about pointers, let’s be clear on 
how memory allocation works in C – and how to 
think about memory in general.
– Addressable unit of memory
– Little- or big-endian (order of byte storage)
– Stack and heap

• Memory can be visualized in several different 
ways
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Memory

• Memory locations 
have:
– An address
– A value (the contents of 

the memory address)
– A name that the 

compiler associates with 
the memory location
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char x, y;

int x, y;

float x, y;

What are the values of x and y?

x = 0x43
y = 0x75

x = 0x706d6f43
y = 0x72657475

x = ...
y = ...
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What order are bytes stored?

• Big-endian – the most significant byte has the 
lowest address (“big end first”)

• Little-endian – The least significant byte has the 
lowest address (“little end first”)

• Historically, most mainframes have been big-
endian, and PCs are little-endian. This does affect 
portability!
– CSIL machines (all Intel-based computers) are little-

endian
– Motorola processors (Macs) are big-endian
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int x = 0x12345678;
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Example (using pointers)

unsigned char a[] =
{10,11,12,13,14,15,16,17,18,19,20};

int *y = a;
y++;
*y = 1;

y
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Visualizing memory: direction
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Visualizing memory: grouping
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Bottom line: People describe memory in many different ways. You 
have to learn to think clearly about what is being stored: where, how, 
and why
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Address space of a C program

Code Write protected 
(segmentation violation!)����������
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Local variables
Function arguments
Return values

Heap Dynamically allocated variables

main

func1

func2

Stack

Global and static variablesData
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int gcount=0;

int func(int x)
{
int y = x*x;
return(y);

}

int main(void)
{
int a=2, b;
static int c=0; 
b = func(a+c);
....

}

Code
����������

���������� Stack

Data

Compiled, executable binary program
(main, func)

gcount, c

a, b

x, y

No heap 
needed

argc, argv would go here



12

Function return values

• Remember, C is call by value
– This is both for passing variables into functions and for 

getting return values from functions

• Example...
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int func(int x)
{

...
return(y);

}

int main()
{

... 
b = func(a+c);
....

}

1. a+c is evaluated, then copied to an 
integer-sized location on the stack

2. func uses that stack memory as its 
local variable x

3. y is evaluated, then copied to an 
integer-sized location on the stack

4. That stack value is copied to b (also a 
stack integer)
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struct data {
int x; int y; int *data;

};

struct data func(struct data in)
{

in.x = 0;
in.y = 0;
in.data = (int *)malloc(100);

return(in);
}

How many bytes will func reserve on the 
stack for its return value?

How many bytes is the variable in?
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struct data {
int x; int y; int *data;

};

int main(void)
{

struct data test;
test.x = test.y = 100;
test.data = -1;

func(test);
...

}

What are the values of test after this call?

100, 100, -1


