Introduction to C, C++, and Unix/Linux

CS 60
Lecture 10: Memory

- Memory
— Reading [KR] Chapters 1 — 7.

Memory

e Before we talk about pointers, let’s be clear on
how memory allocation works in C — and how to
think about memory in general.

— Addressable unit of memory
— Little- or big-endian (order of byte storage)
— Stack and heap

e Memory can be visualized in several different
ways

MemOry Addr Value Name

. 0 [Ox43 | x
e Memory locations 1 [ox6f
have: > [ox64
e memory addressy 4 [0x75 |y
— A name that the 5 |Ox74
compiler associates with 6 [0X65 |z
the memory location 7 |Ox72
/‘ . 8 [0x00 | c1
Byte-addressable memory — 9 |Ox34 |c2
|

O 1 2 3 4 5 6 7 8 9

43 |6f |6d |70 |75 |74 |65 |72 |00 (34

X y Z cl c2

What are the values of x and y?

char x, y; x = 0x43
y = 0x75

Int X, VY; X = 0x706d6f 43
y = 0x72657475

float x, vy, X
y

O Fr N W b 01 OO N 0O O

0x34

0x00

Ox72

Ox65

Ox74

Ox75

Ox70

Ox6d

Ox 6f

0x43

c2
cl

What order are bytes stored?

e Big-endian — the most significant byte has the
lowest address (“big end first™)

o Little-endian — The least significant byte has the
lowest address (“‘little end first™)

* Historically, most mainframes have been big-
endian, and PCs are little-endian. This does affect
portability!

— CSIL machines (all Intel-based computers) are little-
endian

— Motorola processors (Macs) are big-endian

Int X = 0x12345678;

NN NNV

MSB LSB
Big-endian Little-endian
12 |34 |56 | /8 /8 |56 |34 |12
lower _ higher lower _higher

> »

address address address address

Example (using pointers)

unsi gned char aj] =

{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20},
Int *y = a,
y++; y T

10[11(12[13| 1 |0 |0 | 0 [18[19
a /
0x00000001

Visualizing memory: direction

low > high

high low

low high

Visualizing memory: grouping

high high
16 16 int
12 12 int
8 8 int
4 4 int
0 low 0 int low

Bottom line: People describe memory in many different ways. You
have to learn to think clearly about what i1s being stored: where, how,
and why

Address space of a C program

OXFFFFFFFF

A

0x00000000

Code

main
Local variables
funcl Function arguments
Return values
func?

Dynamically allocated variables

Global and static variables

— Write protected

(segmentation violation!)

10

argc, argv would go here | nt gcount =0;

\ I nt func(int Xx)
OxFFFFFFFF Stack a, b 1 o
s int y = xX*Xx;
X, Y return(y);
}
~ I nt nmai n(voi d)
{
| nt a=2, b;
static int c=0;
No heap b = func(a+c);
needed
}
gcount, c
Code Compiled, executable binary program

0x00000000 (mai n, func)

Function return values

 Remember, C 1s call by value

— This 1s both for passing variables into functions and for
getting return values from functions

e Example...

12

I nt func(int X) <«— 2. func uses that stack memory as its

{ local variable X
return(y); «<—— 3.V 1s evaluated, then copied to an
} integer-sized location on the stack
Il nt mai n() 4. That stack value is copied to b (also a
{ stack integer)

b = f UI’]C(a+c) <« 1. a+c is evaluated, then copied to an
integer-sized location on the stack

13

struct data {
Int x; Iint y;, int *data;
¥
Struct data>func(struct data in)
{

In.x = 0O;
In.y = 0;
In.data = (int \¥)nall oc(100);

return(in); How many bytes will f unc reserve on the
} \ stack for its return value?

How many bytes is the variable | n?

14

struct data {
Int x; Iint y;, int *data;
¥
I nt mai n(voli d)
{
struct data test;

test.x = test.y = 100;
test.data = -1;

func(test); «—— What are the values of t est after this call?

) 100, 100, -1

15

