
Introduction to C, C++, and Unix/LinuxIntroduction to C, C++, and Unix/Linux

CS 60
Lecture 10: Memory

→ Memory
→ Reading [KR] Chapters 1 – 7.

2

Memory

• Before we talk about pointers, let’s be clear on
how memory allocation works in C – and how to
think about memory in general.
– Addressable unit of memory
– Little- or big-endian (order of byte storage)
– Stack and heap

• Memory can be visualized in several different
ways

3

Memory

• Memory locations
have:
– An address
– A value (the contents of

the memory address)
– A name that the

compiler associates with
the memory location

Byte-addressable memory 0x34

0x00

0x72

0x65

0x74

0x75

0x70

0x6d

0x6f

0x43

9

8

7

6

5

4

3

2

1

0

z

x

c2

Addr Value Name

y

c1

4

0x43

0x6f

0x6d

0x70

0x75

0x74

0x65

0x72

0x00

0x34

0

1

2

3

4

5

6

7

8

9

y

z

c1

c2

x

340072657475706d6f43

9876543210

c2c1zyx

char x, y;

int x, y;

float x, y;

What are the values of x and y?

x = 0x43
y = 0x75

x = 0x706d6f43
y = 0x72657475

x = ...
y = ...

5

What order are bytes stored?

• Big-endian – the most significant byte has the
lowest address (“big end first”)

• Little-endian – The least significant byte has the
lowest address (“little end first”)

• Historically, most mainframes have been big-
endian, and PCs are little-endian. This does affect
portability!
– CSIL machines (all Intel-based computers) are little-

endian
– Motorola processors (Macs) are big-endian

6

int x = 0x12345678;

78563412

lower
address

higher
address

��� ���

12345678

lower
address

higher
address

Big-endian Little-endian

7

Example (using pointers)

unsigned char a[] =
{10,11,12,13,14,15,16,17,18,19,20};

int *y = a;
y++;
*y = 1;

y

11 12 13 14 15 19 2018171610

a

y

1 0 00

0x00000001
��� ���

8

Visualizing memory: direction

low high

low

high

high

low

9

Visualizing memory: grouping

low

high

�

�

�

�	

�

low

high

�

�

�

�	

�

��

��

��

��

��

Bottom line: People describe memory in many different ways. You
have to learn to think clearly about what is being stored: where, how,
and why

10

Address space of a C program

Code Write protected
(segmentation violation!)����������

����������

Local variables
Function arguments
Return values

Heap Dynamically allocated variables

main

func1

func2

Stack

Global and static variablesData

11

int gcount=0;

int func(int x)
{
int y = x*x;
return(y);

}

int main(void)
{
int a=2, b;
static int c=0;
b = func(a+c);
....

}

Code
����������

���������� Stack

Data

Compiled, executable binary program
(main, func)

gcount, c

a, b

x, y

No heap
needed

argc, argv would go here

12

Function return values

• Remember, C is call by value
– This is both for passing variables into functions and for

getting return values from functions

• Example...

13

int func(int x)
{

...
return(y);

}

int main()
{

...
b = func(a+c);
....

}

1. a+c is evaluated, then copied to an
integer-sized location on the stack

2. func uses that stack memory as its
local variable x

3. y is evaluated, then copied to an
integer-sized location on the stack

4. That stack value is copied to b (also a
stack integer)

14

struct data {
int x; int y; int *data;

};

struct data func(struct data in)
{

in.x = 0;
in.y = 0;
in.data = (int *)malloc(100);

return(in);
}

How many bytes will func reserve on the
stack for its return value?

How many bytes is the variable in?

15

struct data {
int x; int y; int *data;

};

int main(void)
{

struct data test;
test.x = test.y = 100;
test.data = -1;

func(test);
...

}

What are the values of test after this call?

100, 100, -1

