
Introduction to C, C++, and Unix/LinuxIntroduction to C, C++, and Unix/Linux

CS 60
Lecture 11: Pointers

→ Pointers!!!
→ Read [KR] Chapters 1-7

2

Pointers

• A pointer is a variable that contains the address of
a variable
– Pointers are closely related to arrays

• Memory addresses (on our machines) are 4 bytes
long (32 bits, 4G addresses)
– So a pointer must be 4 bytes

char * x;
i nt * y;
doubl e * z;
FI LE * f p;

char is 1 byte
i nt is 4 bytes
doubl e is 8 bytes
FI LE is 148 bytes

x is 4 bytes
y is 4 bytes
z is 4 bytes
f p is 4 bytes

3

f f
f f
01
00
00
00
34
12
00
00

x

y

Memory reminder – What are the values of the integers x and y?

i nt x;
i nt y;

x is 0x1234
y is 1

Little-endian – The least significant byte has the
lowest address (“little end first”)

low address

high address

450
451

452
453

454
455

456

457

458

459

4

What is the address of the integers x and y?

f f
f f
01
00
00
00
34
12
00
00

low address

high address

450
451

452
453

454
455

456

457

458

459

x

y

i nt x;
i nt y;

x is at address 456
y is at address 452

x “starts at” address 456
y “starts at” address 452

Same as saying

5

In other words

f f
f f
01
00
00
00
34
12
00
00

low address

high address

450
451

452
453

454
455

456

457

458

459

x

y

i nt x;
i nt y;

x is 0x1234
y is 1

&x is 456
&y is 452

& – “address” operator
&x – “address of x”

6

i nt x;
i nt y;
i nt * px;
i nt * py;

x = 0x1234;
y = 1;

px = &x;
py = &y;

x

y

px

py

450
451

452
453

454
455

456

457

458

459

44a
44b

44c
44d

44e
44f

= 0x00001234

= 0x00000001

= 0x00000456

= 0x00000452

01
00
00
00
34
12
00
00

52
04
00
00

00
00

56
04

int – 4 bytes pointer – 4 bytes

7

i nt x;
i nt * px;
i nt * * ppx;
i nt * * * pppx;

x

px

ppx

pppx

450
451

452
453

454
455

456

457

458

459

44a
44b

44c
44d

44e
44f

= 0x00001234

= 0x00000456

= 0x00000452

= 0x0000044e

56
04
00
00
34
12
00
00

4e
04
00
00

00
00

52
04

x = 0x1234;
px = &x;
ppx = &px;
pppx = &ppx;

Keep going!

8

It helps to visualize pointers like this:

x34
12
00
00

px56
04
00
00

ppx12
04
00
00

i nt x = 0x1234;
i nt * px = &x;
i nt * * ppx = &px;

9

Following the pointer trail
• The address operator & returns the address of the

variable
– &x is the address of the variable x
– & creates an address from a variable

• The indirection or dereferencing operator *
returns the value that is stored in the memory
address x
– * x is the value of the variable at memory location x
– * follows an address to create a variable

10

int x = 7;
int *px = &x;
int **ppx = &px;
int ***pppx = &ppx;
int ****ppppx = &pppx;
int *****pppppx = &ppppx;

How would we change the
value of “x” using the pointer
declared last from 7 to 35?

The declaration syntax is supposed to be a mnemonic.

int *px; // This could be interpreted as “*px is an integer”

int *****pppppx; // And this could be interpreted as “*****pppppx is an integer”

*****pppppx = 35;

11

So what’s so special about ar rays?

char name[5] = “Ryan”;

The array name without indices is just a
pointer to the first element of the array.

name
[1]
[2]
[3]
[4]

[0]

int num[4] = { 1, 3, 2, 7 };

num

[1]

[2]

[0]

00
03
00
00
00
02
00
00

R
y
a
n

00
00

\ 0

01

name

numThat means these two
assignments are the same!

char *me = &name[0];
char *me = name;

12

Pointers and arrays
• We’ve seen how 1D and 2D arrays are stored in memory

ar r [0] [0] ar r [1] [0] ar r [2] [3]ar r [2] [0]

i nt ar r [3] [4] ; / * 2D ar r ay * /

ar r [0] ar r [4] ar r [11]ar r [8]

i nt ar r [12] ; / * 1D ar r ay * / How big?

13

1D array – via pointer

* par * (par +4) * (par +11)* (par +8)

i nt * par = (i nt *) mal l oc(12* si zeof (i nt)) ;

par +4 is the address
* (par +4) is the value of the integer at par +4

14

Dynamic memory allocation

• Variables are allocated memory space
– Stack – local variables
– Heap – dynamically allocated variables

• “Dynamic allocation” means that memory is
actively managed by the programmer

• Functions used for this:
– malloc, calloc, realloc, free
– Defined in the C standard library
– #i ncl ude <st dl i b. h>

15

Code
����������

����������

Heap

Stack

Data

i nt x;
i nt * px;

x
px

x and px are local variables on the stack

px = (i nt *) mal l oc(8) ;

8 bytes (2 ints) of memory are allocated on
the heap

px points to the beginning of this memory

px = (i nt *) mal l oc(2* si zeof (i nt)) ;

Better

16

voi d * mal l oc(i nt s i ze)

Allocated size bytes of heap memory and returns a pointer
to the beginning of the memory

Returns NULL (0) if there’s an error (not enough available
memory)

The memory is not initialized

Return value should be cast to pointer of the expected type
Good to write for size: N* si zeof (t ype)

space for N variables of the specified type

si ze_t

17

voi d * cal l oc(i nt num, i nt s i ze)

Allocated num elements, size bytes each, of heap memory
and returns a pointer to the beginning of the memory

Returns NULL (0) if there’s an error (not enough available
memory)

The memory is initialized to zero

18

voi d * r eal l oc(voi d * pt r , i nt s i ze)

Changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block

The contents will be unchanged up to the lesser of the new
and old sizes.

If pt r is NULL, realloc() behaves like malloc() for the
specified size

If si ze is zero and pt r is not a null pointer, the object
pointed to is freed

(Probably not used in this course)

19

voi d f r ee(voi d * pt r)

Frees the memory (heap) space pointed to by pt r , which
must have been previously allocated by malloc, calloc, or
realloc – the memory is then available for further
allocation

After memory is freed, it is illegal to access it
If pt r is NULL, nothing happens (legal)
It is an error if the memory has already been freed (undefined

behavior)
pt r should (must?) point to the beginning of the memory

block (as returned by malloc, etc.)

20

Allocating and freeing memory

• When a program or function is finished with the
heap memory it has allocated, it should call “free”
to deallocate the memory
– This is the programmer’s RESPONSABILITY!

• Common problem – “memory leak”
– Chunks of memory that is allocated but never freed
– Builds up over the life of a program and causes it to fail

21

Example
char * myf unc(i nt num)
{

char * st r = (char *) mal l oc(32) ;

spr i nt f (st r , “ Number i s %d” , num) ;
r et ur n(“ l ost st r ”) ;

}

Allocated memory for st r , but never freed it!
32 bytes of memory leak

What if this function gets called millions of times?

22

Example – fixed
char * myf unc(i nt num)
{

char * st r = (char *) mal l oc(32) ;

spr i nt f (st r , “ Number i s %d” , num) ;
f r ee(st r) ;
r et ur n(st r) ;

} The function will return invalid memory!

23

Example – better way
char * myf unc(char * st r , i nt num)
{

spr i nt f (st r , “ Number i s %d” , num) ;
r et ur n(st r) ;

}
Assumes that the calling function has
already allocated memory for st r

It is legal for functions to allocate memory for their local
variables and not free the memory, but it is inadvisable!

In that case, the calling program must take responsibility
for freeing the memory sometime after the function call

24

i nt * px = 0; i nt * px;
* px = 0;

i nt x = 0; i nt x;
x = 0;

i nt * px;
px = 0;

i nt * px = 0;

Pointer syntax

Likely to result in a
segmentation fault!

25

Know the difference!

i nt x = 0; i nt * x = 0;

i nt x;
x = 0;

i nt * x;
x = 0;

i nt y; i nt y;

x = &y; * x = y;x = y;

26

char * c = (char *) mal l oc(100) ;
i nt * i = (i nt *) mal l oc(100) ;
doubl e * d = (doubl e *) mal l oc(100) ;
ui nt x, t mp; / * unsi gned i nt * /

t mp = (ui nt) c;
c++;
x = (ui nt) c – t mp;

t mp = (ui nt) i ;
i ++;
x = (ui nt) i – t mp;

t mp = (ui nt) d;
d++;
x = (ui nt) d – t mp;

x = 1, 4, and 8

27

t ypedef uni on {
char * pc;
i nt * pi ;
doubl e * pd;
voi d * pv;

} Megapoi nt er ;

Megapoi nt er P;
voi d * dat a = (voi d *) mal l oc(100) ;

P. pv = dat a;
pr i nt f (" %p, %p, %p, %p\ n" , P. pc, P. pi , P. pd, P. pv) ;
// E.g., 0x9856008, 0x9856008, 0x9856008, 0x9856008
P. pi ++;
pr i nt f (" %p, %p, %p, %p\ n" , P. pc, P. pi , P. pd, P. pv) ;
// E.g., 0x985600c, 0x985600c, 0x985600c, 0x985600c

How large is P? … 4

28

No!

st r uct Li st {
shor t i nt val ;
st r uct Li st * next ;

} ;

st r uct Li st v1 = { 1, NULL } ;
st r uct Li st v2 = { 2, NULL } ;
st r uct Li st * p = &v1;

v1. val = 7;
* p. val = 7;
(* p) . val = 7;
p- >val = 7;
p- >next = &v2;

v2. val = 300;
(* (v1. next)) . val = 300;
v1. next - >val = 300;
(* (p- >next)) . val = 300;
p- >next - >val = 300;

p

v1 v2

1 2
0

7 300

29

Category Operator Associativity

Postfix � () [] - > . ++ - - Left to right �
Unary prefix� + - ! ~ ++ - - (t ype) * & s i zeof Right to left �
Multiplicative � * / % Left to right �
Additive � + - Left to right �
Shift � << >> Left to right �
Relational � < <= > >= Left to right �
Equality � == ! = Left to right �
Bitwise AND � & Left to right �
Bitwise XOR � ^ Left to right �
Bitwise OR � | Left to right �
Logical AND � && Left to right �
Logical OR � | | Left to right �
Conditional � ?: Right to left �

Assignment � = += - = * = / = %=
>>= <<= &= ^= | = Right to left �

Comma � , Left to right �

P
re

ce
de

nc
e

Table 2.1

30

The - > operator

• - > is just a convenience (and used quite often!)
• Rather than (* p) . val , we can write p- >val

• So what does p++- >next do?
• How about p- >next - >val ++ ?
• And p- >next ++- >val ++ ??? (Try it!)

31

Pointers and arrays

• Pointers and arrays are almost interchangeable
– Anything you can do with arrays, you can do with

pointers
Usually faster and more efficiently
But, more error-prone!

• There is one big difference:
– You cannot modify the value of the array name

Think of it as a number, not a variable

32

Pointers and arrays

ar r [0] ar r [4] ar r [11]ar r [8]

i nt ar r [12] ;

* par * (par +4) * (par +11)* (par +8)

i nt * par = (i nt *) mal l oc(12* si zeof (i nt)) ;

par

par is a variable – held somewhere in memory
ar r is not – it’s just a label that the compiler understands

33

Example …
What is the value of x ?

i nt x, p1[] = { 1, 2, 3, 4, 5 } ;
i nt * p2 = 0;

p2 = p1;
* p1 = 99;
p1++; p1++; / / not al l owed
x = * p2;

4 5321

p1

p2?

0
99

x is 99

p1 p1

34

Pointers and arrays (cont.)

• Otherwise, array names can be treated just like
pointers
– And vice versa

• In C, arrays cannot be passed to, and returned
from, functions as native types
– You must pass/return pointers instead

35

i nt ar r [] = { 1, 2, 3} ;
i nt * pa = ar r ;

* ar r = 100;
* (ar r +1) = 200;
pa[2] = 300;

pa = ar r ;
pa = &ar r [0] ;

Same thing:

ar r [i] ;
* (ar r +i) ;

a+i
&a[i]

voi d f (char s[])
voi d f (char * s)

Because of operator precedence, this is the
same as

pa = &(ar r [0]) ;

Legal and fine:

