Introduction to C, C++, and Unix/Linux

CS 60
C++ Introduction

— Reading [KR] Chapters 1-7
— Read [So] chapters 1, 3, 4 (Boolean), 9, 13, 14, 18, &10.

Notes

Qualline book (Practical C++ Programming)

— You won’t be assigned chapters 2, 4,5,6,7, 8, 11, 12,
and several others — but read them anyway! They will
reinforce the material from [KR].

From Chapter 3

“Contrary to popular belief, programmers do not spend most
of their time writing programs. Far more time 1s spent
maintaining, upgrading, and debugging existing code than
1s ever spent on creating new work.”

Programs are for the machine (instructions what to do) and
for the programmer (description of what i1t does)

Comment liberally (though succinctly) and write code that is
clearly readable even without comments
— Obvious, English-like variable and function names
— Consistent naming style
— Good consistent formatting (indentation, braces, etc.)
— Modular structure (small functions)

So far we’ve covered...

Compiling with gcc

Header files

File structure (multiple files)
Basic I/0

Variables (local, global,
static, const...) and scope

Data types, type casting

Structs, unions, typedef

C operators, control flow,
expressions and statements,
functions

Creating and using C
libraries

Arrays and pointers, pointer
arithmetic

Memory allocation

C standard library functions

voi d func(inté& Xx)

=0; // Initialize

*k k% k k% FunCtion *khkkkkikkkkkkx%k
ar_ Qui z
[HTTETEETErrr [1TLLTTT]
x = 2005; /* Change val ue
std::cout << *XxX Is “ << 2*x;

[/ 1n main
Ilnt z = 123;
std::cin >> z;
func(z);

Commented

“X 1S
Z1s 0

O’?

What 1s C++?

e An object-oriented programming language
e An extension to C

— Developed by Bjarne Stroustroup

— Adds an object-oriented paradigm to C
e A superset of C

— All C code can be compiled by C++
(sort of: g++ -X C)

— For better or for worse...
(stuck with legacy issues)

C vs. C++

e C++ adds some minor improvements to C
— A new I/O system
— Reference variables
— Function overloading
— Inline functions

— Default function parameters

* And brand new things

— Objects, templates, built-in memory handling,
exception handling, ...

Major benefits of C++

e Similar to C, which 1s widely known and used

e Object-oriented design, can lead to code reuse

— Groups data with related functions
e Good performance
e Flexibility (low-level to high-level)

C++ vs. Java

e Both are object-oriented

e Similar features
— Polymorphism
— Inheritance

— Data encapsulation

C++ vs. Java (cont.)

e Differences
— C++ 1s platform-dependent
— Java bytecode 1s platform-independent
— No operator overloading in Java
— No garbage collection in C++
— No multiple inheritance in Java

— Compiler doesn’t enforce structure as much in C++

10

C++ features

e Inheritance
— Through both structs and classes
— Allows for specialization
— Promotes reuse
— Requires programming skill!

¢ Can be inefficient and difficult to understand

11

C++ features (cont.)

e Data encapsulation
— Protects data

+ Public, protected, and private data and functions,
like Java

— Separates API from implementation

— Promotes code reuse

12

C++ features (cont.)

e Polymorphism
— Objects act differently based on their run-time type
— Via function overloading (same name, different class)
+ Function called depends on the data type
— Reduces complexity

+ Common interface to multiple functions
m SetPixelGray8bit, SetPixelFloat32bit, SetPixelColor32bit...
m now just SetPixel()

13

Example: From C to C++

#1 ncl ude <stdio. h>

#defi ne MAX STR LEN 256

Int main(int argc, char **argv)

{//Assune " Is the sane as *
char nanme[MAX STR LEN];
printf(“What’'s your nane? “);
scanf (“%”, nane);
printf(“H there, %!\n”, nane);
return(0);

14

EXEIIIIPI@I From C to C++ /usr/include/c++

#1 ncl ude <i ostreanp

#defi ne MAX STR LEN 256

Int main(int argc, char **argv)

{//Assune " Is the sane as *
char nanme[MAX STR LEN];
printf(“What’'s your nane? “);
scanf (“9%”, nane);
printf(“H there, %!\n”, nane);
return(0);

15

Example: From C to C++

#1 ncl ude <i ostreanp

#1 ncl ude <string>

Int main(int argc, char **argv)

{//Assune " Is the sane as *
std::string nane;
printf(“What’'s your nane? “);
scanf (“9%”, nane);
printf(“H there, %!\n”, nane);
return(0);

16

Example: From C to C++

#1 ncl ude <i ostreanp
#1 ncl ude <string>
Int main(int argc, char **argv)
{//Assune " Is the sane as *
std::string nane;
std::cout << “What’s your nane? *“;
scanf (“9%”, nane);
std::cout << “H there, " << nane << "1\ n”;
return(0);

17

Example: From C to C++

#1 ncl ude <i ostreanp
#1 ncl ude <string>
Int main(int argc, char **argv)
{//Assune " Is the sane as *
std::string nane;
std::cout << "What’'s your nane? ”;
std::cin >> nane;
std::cout << "H there, 7 << nane << "1\ n”;
return(0);

18

Example: From C to C++

#1 ncl ude <i ostreanp
#i ncl ude <string>
Int main(int argc, char **argv)
{//Assune " Is the sane as *
usi ng nanespace std;
string nane,
cout << "What'’'s your nane? ”;
cin >> nane;
cout << "H there, ” << nane << "7 <<endl;
return(0);

19

First full C++ program

 C++ header files
 Namespace

e User-defined class
e string

e cout, cin

20

#i ncl ude <i ostreanp voi d H There::sayHel |l o(voi d)
#i ncl ude <string> {

cout << “What’'s your nane? “;
ci n >> nane;

usi ng nanespace std; L)
cout << “H there, “ <<nane

<<"17” <<endl;
cl ass H There)
{
publi c: I nt mai n(int argc, char **argv)
voi d sayHel | o(voi d); {
pr ot ect ed: H There gr eet i ng,
string nane: greeting. sayHel | o();
1 return(0);

}

21

Compiling C++ files

e Filename options:

- .C

_ cc To compile:

_ o4t % g++ -0 hell o hell o. cpp
— .Cp

— CXX g++ calls gcc with the default

— .cpp language set to C++, and

automatically specifies linking
with the C++ library

22

What will this print?

| Nt | (O) e Initialize variable value

std::cout << i++ << |j++ << |j++ << endl:

Qut pUt : No spaces
210 e 2then1thenO

23

New C++ types

* bool type
—trueorfal se

— Uses values 1 and 0, but the compiler can do type
checking

— Should be used 1n logic statements (rather than *“zero”
and ‘“non-zero”

e wchar _t type
— Wide characters (4 bytes)
— For character sets beyond ASCII

— Used 1in most professional programming now

24

New C++ types (cont.)

e The C++ library provides a powertul string
package (#1 ncl ude <string>)

— Manages storage for you! But there’s overhead....

— Several operators are defined on strings, e.g.:

= [] + at() length() substr()

std::string nanme(“Joe”);
narre 4= 1 Sm t hn ,
| en nane. | engt h() ;

25

New C++ types (cont.)

e WSt ri ng — just like string, but uses wide
characters (wchar t) instead of char

std::wstring nane(L*“Joe”);
nane += L* Smth”;
|l en = nane. | engt h();

26

C strings and C++ strings

e (strings can co-exist with C++ strings, but they

are not interchangeable

— Must do conversion
— See Chapter 5

#1 ncl ude <cstring>
char nane[64];
std::strcpy(nane,

“Joe Smth”);

27

#1 ncl ude <string>
#1 ncl ude <cstring>

string person(“John Doe”);

char nane[64] ;

std::strcpy(nanme, person.c _str());

\

Accesses a C-like string

28

Standard input, output, error

e StC
e StC
e STC

e Std

. ;. cout for writing to stdout
. . €I n for reading from stdin
. . cerr for writing to stderr
.. getline

29

