Introduction to C, C++, and Unix/Linux

CS 60

Lecture 10: Classes

— C++ Classes
— Reading [KR] Chapters 1-7
— Read [So] chapters 1, 3, 4 (Boolean), 9, 13, 14 & 18 & 10

From namespace to class

A C++ class combines data and functions in a
single namespace, creating a new data type

e Combines features of a struct with a namespace,
along with some extra options
— Data can be declared public, protected, private

— Some functions automatically generated (e.g.,
constructor, destructor, copy constructor, =, New,
del et e)

—this

Classes and objects

e A C++ class 1s an object type

— Defining a class means defining the attributes (data)
and behavior (methods/functions) of a new data type

* An object 1s created by declaring a variable of the
class type (instantiation)

cl ass Pl ayer { Pl ayer pl, p2, p3;

} ; Class instantiation

Class definition/specification
(Often in include file)

Class interface

 The interface defines the behavior of the class to
the outside world (to other classes and functions
that may access variables of your class type).

r

e The interfaceto a class is the list of public data
members and methods

* The implementation of your class doesn't matter
outside the class — only the interface

— The implementation can change dramatically, as long as
the interface stays the same

Player object

v

v

Name
{ » SetName

Print
AddGame

\ StatLine

v

» Reset

Games

v

The class user “sees’ the interface, not the
internal (private) data (directly) and functions

Object oriented programming

e In OOP, the programmer thinks about and defines
the attributes and behavior of objects

— Often the objects are modeled after real-world entities

e Very different approach than function-based
programming (like C)
— Most of the action happens inside classes!

— Though we still provide mai n() , and many other
things don’t change...

Reasons for object oriented programming

e Modularization

— Abstraction — representing the essential features of
something without including inessential detail

— Encapsulation — grouping related things together

— Information hiding — expose only what you want
e Inheritance

e Polymorphism

Inheritance

It is possible to extend existing classes without
knowing much about them

— Add whatever new behavior you want

e Example:
— You have a class that represents a “player”
— Create a new class that 1s a ““star player”

+ Most of the behavior and attributes are the same, but
a few are different — specialized

Inheritance (cont.)

Base class
Star Player Player
IncreaseSalary ShoeContract l
Player .
Derived class
Name —>
SetName : > Star Player
Print g
AddGame .
StatLine >
Reset
Games

Derived class
Super Star Player

Inheritance (cont.)

o A SuperStarPlayer is a Star Player
is a Player

e Any function that takes a Player can
be passed a Star Player or a
Super Star Player

fl oat PP Pl ayer p)
{

return(p. poi nts/p.ganes);

} l

If poi nt s and ganes are ints, should be this:

return((fl oat)p. points/p. ganes);

This assumes that the data variables poi nt s and gamnes are
public (but they will not be public — compiler error!)

Base class
Player

|

Derived class
Star Player

|

Derived class

Super Star Player

10

Polymorphism

e The ability of different objects to respond to the
same message in different ways.

e Tell ani nt to printitself: i.print();
 Now tell a doubl e: X.print();
« Now tell a Pl ayer : pl.print();

Or: cout << |;
cout << Xx;
cout << pl;

11

cl ass Pl ayer {
private:
std::string nane;
| Nt ganes;
| Nt poi nts; > Data (private)
| nt rebounds;
| Nt assi sts;
publ i c:
void Print();
bool AddGane(int, int, int),;
std::string Nane(); > Functions (public)
voi d Set Nane(std::string);
voi d Reset();

Example: Player.h

\

12

voi d [PI ayer: :]Pri nt ()
{

Example: Player.cpp

cout << nane << “ “ << rebounds << * * <<
assi sts << endl

}

void[PIayer:JAddGﬁnE(int points, Int rebs,
| Nt assis)
{

gane++;[this->points]+: poi nt s;
rebounds += rebs; assists += assts;

When defining class functions, data can be accessed directly
(no “Pl ayer : : ” required)

13

[inline]std::string Pl ayer: : Nane()

{
return nane;
}
[inline]void Pl ayer:: Set Nane(std::string nane)
{
t hi s- >nane = nane;
}
I nline void Player:: Reset ()
{

ganmes = points = rebounds = assists = 0O;

}

14

Player pl, pZ; Example: main.cpp

pl. Set Nane(" St eve Nash);,\\\\Maybedothjsat
pl. AddGane(48, 5, 5); " initialization time?
p2. Set Nane(“Dirk Now t zki");

p2. AddGane(25, 8, 3);

std::cout << pl.Nanme() << “has scored “ <<
pl. points << endl;

|

No, can’t access this member variable — it’s private!

What are the initial values of the data variables? Undefined

15

Inheritance (cont.)

Base class
Star Player Player
IncreaseSalary ShoeContract l
Player .
Derived class
Name —>
SetName : > Star Player
Print g
AddGame .
StatLine >
Reset
Games

Derived class
Super Star Player

16

Inheritance (cont.)

o A SuperStarPlayer is a Star Player Base class
is a Player Player
e Any function that takes a Player can
be passed a Star Player or a l
Super Star Player
Derived class
Star Player
BUT NOT VICE VERSA!I l

Derived class
Super Star Player

17

Player
StarPlayer
SuperStarplayer

StarPlayer
SuperStarplayer

SuperStarplayer

Star Player Super Star Player

Ay Ay
sO» *O» &
4 I >4 I

Functi onl(Pl ayer p) &

Functi on2(St ar Pl ayer

Functi on3(Super St ar Pl ayer p) R @

18

cl ass Pl ayer {
private:
std::string nane;
| Nt ganes;
| Nt poi nts; > Data (private)
| nt rebounds;
| Nt assi sts;

publ i c: N The class interface
void Print();
bool AddGane(int, int, int),; ./
std::string Nane(); > Functions (public)
voi d Set Nane(std::string);
voi d Reset();

\

19

class StarPlayer : public Player {
private:
Int extraM | |1 ons;
std::string sponsor;
publ i c:
void I ncreaseSalary(int mllions);
std::string& ShoeContract();

'

cl ass Super StarPl ayer : public StarPlayer {
publ i c:
void Print();

i

20

void StarPlayer::lncreaseSalary(int m

{

}

std::string& StarPl ayer:: ShoeContract ()
{

}

voi d Super StarPlayer::Print()
{

extraM |l lions += m

return(sponsor);

std::cout << “The fabul ous ”;
Player::Print();
}

21

cl ass Pl ayer { Functions can be defined in the class
: definition itself
private:

/] dat a

publ i c:
[/ functions ,/////
int Points() { return points; }

Pl ayer () ;
Pl ayer (st d:

Automatically inlined

: Constructor functions
s string nane);

Pl ayer pl,
Pl ayer p2(“Larry Bird”);

Notice: No return value type for constructor (and destructor) functions!

22

Pl ayer:: Pl ayer ()

{
nanme = *“ / games = points = rebounds = assists= 0
Reset () ;

}

Pl ayer:: Player(str::string str)
{

name = str;
Reset () ;

}

23

