
Introduction to C, C++, and Unix/LinuxIntroduction to C, C++, and Unix/Linux

CS 60

→ C++ classes
→ Reading [KR] Chapters 1-7
→ Read [So] chapters 1, 3, 4 (Boolean), 9, 13, 14 & 18 & 10

2

Super St ar Pl ayer p1(“ St eve Nash”) ;

St ar Pl ayer p2(“ Di r k Nowi t zki ”) ;

Pl ayer p3;

p3. Name() = “ Shawn Br adl ey” ;

p1. AddGame(48, 5, 5) ;

p2. AddGame(25, 8, 3) ;

p3. AddGame(0, 0, 0) ;

p1. Pr i nt () ;

p2. Pr i nt () ;

p3. Pr i nt () ;

p1. I ncr easeSal ar y(90) ;

p2. ShoeCont r act () = “ Ni ke” ;

3

cl ass Pl ayer {

pr i vat e:

st d: : st r i ng name;

i nt games;

i nt poi nt s;

i nt r ebounds;

i nt assi st s;

publ i c:

Pl ayer () ;

Pl ayer (st d: : st r i ng name) ;

voi d Reset () ;

voi d Pr i nt () ;

bool AddGame(i nt , i nt , i nt) ;

voi d Set Name(st d: : st r i ng n) ;

voi d Set Games(i nt g) ;

voi d Set Poi nt s(i nt p) ;

voi d Set Rebounds(i nt r) ;

voi d Set Assi st s(i nt a) ;

st d: : st r i ng Name() ;

i nt Games() ;

i nt Poi nt s() ;

i nt Rebounds() ;

i nt Assi st s() ;

} ;

Methods to Get and Set values

4

cl ass Pl ayer {

pr i vat e:

st d: : st r i ng name;

i nt games;

i nt poi nt s;

i nt r ebounds;

i nt assi st s;

publ i c:

Pl ayer () ;

Pl ayer (st d: : st r i ng name) ;

voi d Reset () ;

voi d Pr i nt () ;

bool AddGame(i nt , i nt , i nt) ;

st d: : st r i ng& Name() ;

i nt & Games() ;

i nt & Poi nt s() ;

i nt & Rebounds() ;

i nt & Assi st s() ;

} ;

Pl ayer p1(“ St eve Nash”) ;

p1. Games() = 82;

p1. Poi nt s() = 1512;

p1. Rebounds() = 281;

p1. Assi st s() = 1183;

Get and Set values via returned
reference variables

5

cl ass Pl ayer {

pr i vat e:

st d: : st r i ng name;

i nt games;

i nt poi nt s;

i nt r ebounds;

i nt assi st s;

publ i c:

Pl ayer () ;

Pl ayer (st d: : st r i ng name) ;

voi d Reset () ;

voi d Pr i nt () ;

bool AddGame(i nt , i nt , i nt) ;

st d: : st r i ng& Name() ;

const i nt & Games() ;

const i nt & Poi nt s() ;

const i nt & Rebounds() ;

const i nt & Assi st s() ;

} ;

Pl ayer p1(“ St eve Nash”) ;

p1. Games() = 82;

p1. Poi nt s() = 1512;

p1. Rebounds() = 281;

p1. Assi st s() = 1183;

6

Data access
• p1. games, p2. poi nt s, p3. assi st s

are all illegal accesses, because the class variables
are pr i vat e

• Inside a Pl ayer function definition, the variables
games , poi nt s , and assi st s can be accessed
and modified directly

• How about inside a St ar Pl ayer function
definition? A Super St ar Pl ayer function
definition?

7

Data access (cont.)
• The pr ot ect ed label indicates that the member

variable is private to everyone except the
functions of the class and of any der ived class

cl ass Pl ayer {

pr ot ect ed:

st d: : st r i ng name;

i nt games;

i nt poi nt s;

i nt r ebounds;

i nt assi st s;

. . .

}

St ar Pl ayer and
Super St ar Pl ayer can
access these variables directly

8

Data access summary: data and functions
• publ i c

– Can be universally accessed: directly
from the class object, in functions of
the class and any derived class

• pr ot ect ed

– Can be accessed by functions of the
class and any derived class

• pr i vat e

– Can only be accessed by functions of
the class

p1. games = 0;

i nt Pl ayer : : f ()

i nt St ar Pl ayer : : f ()

Pl ayer p1;

i nt Pl ayer : : f ()

i nt St ar Pl ayer : : f ()

i nt Pl ayer : : f ()

9

The class interface

• Designing a class interface is an art, not a science
– Should any data elements be public?
– Should any data elements be modifiable via functions

that “go both ways” (get/set)?
– Should relevant computations (e.g., points per game,

rebounds per game) be assigned when the raw data is
entered, or when requested?

– How many different ways should the class be
initialized?

10

Player class file structure
• Pl ayer . h

– Class definition
• Pl ayer . cpp

– Class functions defined

• File using the Player class includes the header:
– #i ncl ude <Pl ayer . h>

Except for simple classes,
which can go in the file with
the mai n function

11

Structures vs. Classes

• A structure is just like a class with all the data
fields and member functions declared public
– It is legal to define a function within a structure, by the

way
• Structures are still used in C++

– For data only, when there are no associated functions
that should be defined along with the data

12

Class constructors
• Every class has at least one class constructor

– Pl ayer () is created automatically if a class
constructor is not explicitly defined

– Several constructors may be defined (function
overloading)

• When a class object is created (an instance of the
class is created, the class is instantiated), the class
constructor is automatically called
– Player p1;
– Player p2(“Steve Nash”);
– Player p3(“Steve Nash”, 4, 85, 15, 49);

How many different
constructors?

13

Pl ayer : : Pl ayer (st r : : st r i ng st r =“ ” , i nt g=0,
i nt p=0, i nt r =0, i nt a=0)

{
name = st r ;
games = g;
poi nt s = p;
r ebounds = r ;
assi st s = a;

}

Could be accomplished with one constructor with
default parameters, as here.
Or as several different constructors that allow
different combinations of parameters to be set.

Note no return type

14

Class destructor

• Every class has exactly one destructor
– ~Pl ayer () is created automatically if the class

destructor is not explicitly defined
– No function overloading for the destructor

• The destructor is called when the variable is
destroyed
– Goes out of scope
– del et e called on a pointer to the variable

• Don’t call the destructor directly!

15

Class destructor (cont.)

• Destructors are used as an opportunity to free up
heap memory (call del et e where appropriate),
to warn of any strangeness, and to “tidy up”

• Example: an image class
– When the image object is destroyed, should you free

the image memory?
– Not if another image is also pointing to that same

memory!

16

Copy constructor

• The copy constructor is invoked to make a copy of
a class object

• Generally used in three ways:
– Pl ayer p1(p2) ;

– Pl ayer p1 = p2;

– p3 = f unct i on(p1) ;

// p1 is a copy of existing p2
// Same as above
// p1 is copied onto the stack, and

the result is copied from the
stack into p3 (call by value)

This assumes that a constructor is defined that takes a Player as the argument

17

Copy constructor (cont.)

Pl ayer p1 = p2;

The copy constructor is used here, NOT the =
operator – the compiler understands that this is an
initialization. So it’s not treated as:

Pl ayer p1;

p1 = p2; // Here the assignment operator is used, not
the copy constructor!

18

Copy constructor (cont.)
Pl ayer : : Pl ayer (const Pl ayer & ol dp)
{

name = ol dp. name;
games = ol dp. games;
poi nt s = ol dp. poi nt s;
r ebounds = ol dp. r ebounds;
assi st s = ol dp. assi st s;

}

The default copy constructor (provided by the compiler if one is not specified)
does this anyway – copies the member elements
Why might you need a copy constructor?

19

The assignment operator

• It’s often very useful to overload the assignment
operator =

Pl ayer p1;

p1 = p2; Used here

Pl ayer Pl ayer : : oper at or = (const Pl ayer & ol dp)

As with the copy constructor, the default = copies all the member elements,
but pointers (heap memory) must be dealt with by overloading and handling it
yourself (allocate and copy)

20

Explicit constructor

If you really do want
Pl ayer p1 = p2;

to be the two-step initialization (creation + assignment),
then you can tell the compiler to make the constructor
explicit

expl i c i t Pl ayer (Pl ayer & ol dp) ;

See p. 205

21

Highly recommended exercise

• Create a class with various constructors, a copy
constructor, an assignment operator, and a destructor
– In each of these functions, print out a short message (like

st d: : cout << “ I n const r uct or #1\ n”)
• Experiment with different ways of declaring a class

object, assigning a value to it, assigning another
object to it, deleting it, letting it go out of scope, etc.
– See what gets printed out – and if you predicted it!

22

Defining/overloading class operators

• Can be overloaded:
– unary operators

+ - * & ~ ! ++ - - - >

new new[] del et e del et e[]

– binary operators
+ - * / % ^ & | << >>
+= - = * = / = %= ^= &= | = <<= >>=
< <= > >= == ! = && | |
, [] ()

Try some!

23

Example: Overloading ==

• The equivalence operator (==) has to be defined
for a new class, if it is to be used
– As do most of the operators on the previous slide
– Some already exist (e.g., new, delete) but can be

overloaded
• Let’s define and overload == for Pl ayer

24

cl ass Pl ayer {

. . .

publ i c:

Pl ayer () ;

Pl ayer (st d: : st r i ng name) ;

bool oper at or == (const Pl ayer & p) ;

bool oper at or == (st d: : st r i ng name) ;

. . .

} ;

25

bool Pl ayer : : oper at or == (const Pl ayer & p)

{

i f (name == p. name && games == p. games &&

poi nt s == p. poi nt s && assi st s == p. assi st s &&

r ebounds == p. r ebounds) r et ur n t r ue;

el se r et ur n f al se;

}

bool Pl ayer : : oper at or == (const st r : : st r i ng& n)

{

i f (name == n) r et ur n t r ue;

el se r et ur n f al se;

}

26

i f (p1 == p1) . . .

i f (p1 == “ St eve Nash”) . . .

i f (p1 == 3) . . . / / ERROR

Now we can write this code:

Let’s fix that

27

cl ass Pl ayer {

. . .

bool Pl ayer : : oper at or == (i nt n) ;

. . .

}

bool Pl ayer : : oper at or == (i nt n)

{

i f (games == n) r et ur n t r ue;

el se r et ur n f al se;

}

28

Exercise

• Create a class called Base with the various
constructors, etc., and try

Base a;

Base b(4) ;

Base c=4;

Base d=c;

Base e(4, 3) ;

Base f (b) ;

Base * g = &a;

Base * h = new Base;

Base * i = new Base(c) ;

Base * j = new Base[3] ;

a = b;

Func(a) ;

What gets printed out when we add print
stetements (as in the Class List)?

29

Automatically generated class functions

cl ass Base {

publ i c:

Base() ; / / add pr i nt “ C1”

Base(i nt num) ; / / add pr i nt “ C2”

Base(const Base& b) / / add pr i nt “ CC”

~Base() ; / / add pr i nt “ D”

Base oper at or = (const Base& b) ; / / + pr i nt “ =”

} ;

Base f unc(Base b) { / / add pr i nt “ f unc”

Base a = b;

r et ur n a;

}

30

• Assume that in each of the functions on the
previous slide, we print out the string in red (C1,
C2, CC, D, or =)

• Next slide:
– Left column: Lines of code in a main() function
– Right column: What will be printed out for each line

• Make sure you go through these carefully and
understand!

31

Base a;

Base b(4) ;

Base c = 4;

Base d = c;

Base f (b) ;

Base * g = &a;

Base * h = new Base;

Base * i = new Base(c) ;

Base * j = new Base[3] ;

a = b;

f unc(a) ;

del et e h;

del et e i ;

del et e[] j ;

C1

C2

C2

CC

CC

(not hi ng)

C1

CC

C1 C1 C1

= CC D

CC CC f unc D D

D

D

D D D

32

Reminder

Of the four automatically generated class functions,
only “operator = ” has a return type

cl ass Base {

publ i c:

Base() ;

Base(const Base& b)

~Base() ;

Base oper at or = (const Base& b) ;

} ;

Why?

Also, if a different constructor is defined, the default
one is not generated

33

Constant classes

• A class object can be declared constant:
const Pl ayer p1;

• What functions can and cannot be called on a
const class object?
– Functions must be declared const as such:

i nt Games() const ;

const Pl ayer p1;

p1. Games() ; / / Okay

p1. Set Name(“ Joe Smi t h”) ; / / ERROR

34

Constants in classes

• Classes can have constant member variables, but
initializing the values is a bit awkward

cl ass Base {

const f l oat pi = 3. 14; / / ERROR

const f l oat pi ;

Base() ;

Base(f l oat pi val) ;

} ;

Base() : pi (3. 14) { . . . }

Base(f l oat pi val) : pi (pi val) { . . . }

35

Static member variables
• Declaring a class member variable static makes it

a global variable for that class
st at i c i nt obj _count ;

• No matter how many class objects are instantiated
(even zero), there is only one instance of that
particular variable
– Think of it as belonging to the class, not to any

particular class object
• Access:

Base: : obj _count = 0;

Base: : obj _count += 100;

36

Base: : Base()

{

obj _count ++;

}

Base: : ~Base()

{

obj _count - - ;

}

Base: : obj _count = 0;

Base b1;

Base b2;

Base * b3 = new Base;

del et e b3;

st d: : cout <<
Base: : obj _count ;

Static member variables are for keeping information about the
class in general (not specific class objects)

Note: Accessed before any class object is declared

37

P.S.

• You have to tell C++ which object file actually
holds the (global) static class variable

• In one file, at global scope:

i nt Base: : obj _count ;

38

cl ass Base {

publ i c:

st at i c i nt obj _count ;

Base() { obj _count ++; }

~Base() { obj _count - - ; }

} ;

i nt Base: : obj _count = 0;

i nt mai n()

{

Base a, b, c;

cout << Base: : obj _count << endl ;

r et ur n 0;

}

39

Static member functions

• The preceding example assumed that the static
variable was publ i c , which probably isn’t
desirable. How to initialize and access if it’s
private?

• Static member functions
– Can access static member variables (only)
– Make obj _count private
– Define static functions Get Count () , Set Count ()

40

cl ass Base {

pr i vat e:
i nt obj _count ;

publ i c:

st at i c i nt Get Count ()

{

r et ur n obj _count ;
} ;

st at i c voi d Set Count (i nt n)

{

obj _count = n;

} ;
} ;

i nt Base: : obj _count ;

i nt mai n() {

Base: : Set Count (0) ;

Base b1;

Base b2;

Base * b3 = new Base;

del et e b3;

st d: : cout <<
Base: : Get Count () ; }

41

Meanings of st at i c Table 14-1

Function can only access
static members

Class member function

One copy is created per
class

Class member variable

Scope of the function is
limited to the file

Function declaration

Variable is permanent
(keeps its value)

Variable declared inside a
function

Global variable (scope: that
file only)

Variable outside the body
of any function

MeaningUsage

