Introduction to C, C++, and Unix/Linux

CS 60
Wednesday June 1, 2005

— C and C++ together
— Exception handling
— Reading [KR] Chapters 1-7

— Read [So] chapters 1, 3, 4 (Boolean), 9,
13, 14 & 18.

Notes

Questions?

Combining C++ and C

* We often need to use C libraries (or object files) in
C++ programs

e But C functions are defined differently, and they
do not link with C++ programs

e But we can fix that...

func.c main.cpp

int func(int x, int y) int func(int, int);

{
return(x+y); I nt mai n()

} {

int z = func(2, 3);
return z;

}

$ gcc —c func.c

$ g++ -0 main main.cpp func.o

[tnp/ ccAUxg9t . o(.text+0Ox1b): In function main':
undefined reference to func(int, int)'’

collect2: Id returned 1 exit status

func.c main.cpp

int func(int x, int vy) extern “C {
{ Int func(int, int);
return(x+y); }
}
I nt mai n()
{
int z = func(2, 3);
return z;
}

$ gcc —c func.c

$ g++ -0 main main.cpp func.o
$ main

$ echo $status

)

func.c

int func(int x, int vy)

{
}

return(x+y);

func.h

#if defined(__cpl uspl us)
extern “C {

#endi f

int func(int, int);

#if defined(__cpl uspl us)

}
#endi f

main.cpp

#i ncl ude “func. h”

I nt mai n()

{
int z = func(2, 3);
return z;

}

Now func.h can be included in both C and
C++ source files, and func.o (or libfunc.a)
can be used with both C and C++
programs

Try 1t!

Exception handling

 Exceptions are emergency procedures — run-time
program anomalies

— Division by zero, arithmetic or array overflow,
exhaustion of free memory, illegal parameter, etc.

 What to do when such an anomaly occurs?

— Ignore, segmentation fault, program abort, program exit

 Exception handling provides a standard way of
defining and responding to such anomalies

- DNDEBUG flag ignores asserts

Assert The whole assert (expr) isignored!

e The assert function checks to see if a condition is true.

If 1t 1s not, the program 1s aborted with an error message,
including the file name and line number of the assert

e This is useful to the programmer, but not to the end user

#i ncl ude <cassert> // or <assert. h>

Int M/Array::store(int index, int value)
{

assert (i ndex >= 0);

assert (i ndex < MAX | ARRAY S2);

m i array[1 ndex] = val ue;

Error handling

e 1f/else/else constructs distract from the core
functionality of the program and cause spaghetti

code (intermixing of the algorithm and the error
handling)

e Asserts are drastic — they abort the program

e Exceptions allow us to continue and explicitly
handle the error

| nt
1 f (arr

}

*arr = new i nt[1000];

0) {

cerr << “No space\n”’;
exit(1l);

| nt

*arr = new i nt[1000];

assert(arr);

v

prog: prog.cpp: 38:
Assertion ‘arr’
Abort (core dunped)

fail ed.

i nt mai n(int,

Int *arr, |1en=1000;
try {
Int *arr = newint[len];
I f (arr == 0) throw arr;
}

catch (int* str) {
cerr << “Smaller...\n";
| en = 500;
arr = newint[len];

|

char**): Smal | er. ..

10

e Typically the exceptions would be thrown at a
deeper level (in some class functions)

e “throw / catch” allows for the error handling to be
defined separate from the main code

— Your class (or library) doesn’t have to handle every
exception — just throw exceptions for the calling
program to handle

— For example stack empty or stack full

11

assert vs. exceptions

e assert 1s good for checking conditions that
should never happen

e assert is very handy during program
development and debugging

e Exceptions are good for handling conditions that

are rare but possible, and don’t necessarily require
program termination

12

Exception handling

Exception handling
Throw
@ catch
catch
object O catch
& | catch
catch

Exceptions: t ry,t hr ow, and cat ch

1.

A description of a possible problem — what type
of exceptions will we handle?

A section of code 1n which the exception may
occur, enclosed in atry block

Something that causes an exception and triggers
the emergency procedures through a t hr ow

statement

Exception handling code inside a cat ch block

14

Problem description

e Define objects that can describe the problems

class fire_energency {

publ i c:
[/ Which engine is on fire
| nt engi ne;

[/ Other 1 nfornation
[/ about the fire

15

Where problems may occur

e Use the t r y statement to define a section of code
in which an exception may occur

try {
fly frompoint a to point b();

Uses class objects that may throw exceptions

16

Triggering an exception

 Something that causes an exception and triggers the
emergency procedures through at hr ow statement.

[l Watch for fire in engine #2
voi d Engi ne:: Sensor_2(void) {
while (engine running()) {
1 f (engine on fire()) {
fire emergency fire_info;
fire_info.engine = 2
throwm(fire_info);

17

Handling the exception

e Catch (handle) the exception based on its type, via a cat ch
block

try {
fly frompoint a to point _b();
}
catch (fire_energency & ire_info) {
active extinguisher(fire_iInfo.engine);
turn_off(fire_i nfo.engine);
| and_at next _airport();

18

try {

fly frompoint _a to point _b();

}

catch (fire_energency& fire_info) {

I, ..

| and_at _next _airport();

}

catch (food _energency& food info) {

repl eni

}

catch (stri

sh(food_i nfo);

ng& str) {

cout << str << endl: Default catch
}
cat ch (...)*T//////////////////////’

cout << “Sonething’s wong! << endl;

}

19

Throw — Catch

 Throws and Catches are matched up by comparing

the type of the object thrown with the types of the
catch handlers

e A match i1s made if any of these holds:
— Both types are exactly the same

— The catch handler type 1s a public base class from
which the thrown object 1s derived

— The catch handler type 1s a pointer, and the object
thrown can be converted to that pointer type by a
standard pointer conversion

20

Only one cat ch is executed, and order matters
The program continues after the cat ch blocks

catch(...) catches anything — usually listed
last as the default

A t hr owwith no cat ch causes the program to
abort

Throwing an exception during a catch block
causes the program to abort

21

Class destructors

e It1s fine to throw exceptions in a class constructor
 Don’t throw an exception in a class destructor!
* Reason:

— An exception 1s not handled in the current procedure, so
first that procedure 1s exited — and its variables are
destroyed

— If the destructor for one of these variables causes a
second exception to be thrown, the program will abort
(without doing the exception handling you intended).

22

Oneuse Moretypical use:

float z; MyApp app;

try { try {
Int X, Vv, app. Set up();
cin >> Xx; app. Run() ;
cin >> vy; }
1f (y ==0) throw“DIV 0”; catch (DivZero dz) {
z = Xxly; -

} }

catch (string str) { catch (I nsuf Menory nem {
cout << “Error: " <<str; C

} }

catch (string str) {
cout << “Error: 7;
cout << str << endl;

}

catch (...) {

cout << “Random error\n”:

}

23

Exception class

e Often there will be a special class defined just for
exceptions (e.g., CEXcepti on)

t hrow CException(“Error #3”, “engine”,
true, true, 42);

cl ass CException {
string Message;
string Modul e;

bool Urgent;
| nt Answer TolLi f e;
publ i c:
CException(string Message, ...);

b

24

Bottom line...

e Main advantages of C++ exception handling:
— Separates error handling code from normal program code

— Encourages uniform and thorough error handling

* The exception handling mechanism 1s particularly
useful 1n large projects, where clarity of code 1s
vital and thorough exception handling is important

e assert (expr) is still quite useful, though!

25

