
Introduction to C, C++, and Introduction to C, C++, and
Unix/LinuxUnix/Linux

CS 60
Lecture 2: History

→ C, Unix/Linux and C++
→ Compilation Process…

→Reading for next class: K&R ch. 1-2 &
7.1-7.4.

2

Notes

• Quiz Thursday
• Program due Thursday
• Any questions?
• We will continue our “apple breaks (2 mins)”

3

Comment on the lectures

• I won’t be going over every section of the books
• Rather, I’ll be highlighting some things in the

books, and presenting other material to
complement what you’re learning from the books
– But feel free to ask questions from the books

• Soon we’ll start focusing much more on C details
– Make sure you know the basics and explore the

language constructs.

4

The C programming language

• C is a procedural (or imperative) programming
language
– It specifies an explicit sequence of steps (instructions)

to follow: do this, then this, then this…

• C is a compiled (not interpreted) language

• Java and C++ are object-oriented programming
(OOP) languages
– Forget objects for now – C does functions

5

The C programming language

• C is a “low-level high-level” programming
language

Computer hardware

Machine language

Assembly language

High-level languages

Close to the hardware

Abstract

C
Java, C++
Lisp, Prolog

6

The C programming language
• Some languages like Lisp or Prolog attempt to completely

divorce the programmer of any knowledge of the actual
hardware running the program

• Other languages are more closely tied to the hardware

• C is very close to the hardware and some programs require
knowledge of how the computer actually works internally

• One may compare C to a “sharp knife”: A great and
efficient tool for precision tasks, but DANGEROUS!

7

C vs. Java
• On the surface, C is much simpler to deal with

– Almost everything is permissible!
• Simplicity comes at a high price

– Freedom encourages lack of structure
– Not as much compile-time validation
– Cross-platform portability uncertain

E.g., size of ints and floats

• Closer to the “bare metal”
– Micro-managing I/O operations
– Memory management and pointers
– Little run-time error checking

8

Why C?

• The language is ubiquitous.
• C is “fast” relative to interpreted languages.
• C is “fast” compared with any language that has a

lot of built-in overhead to keep you out of trouble
• It’s available on almost every platform, and with

recent standards, it’s become possible to write
(fairly) portable code.

9

Portability of C

• C is probably the lowest level language where
some portability can be assured across
architectures (platforms)
– Thus, it’s the lowest level high level language…

10

A short history of C and Unix
• C was originally created as a language with which one

could write operating systems (like Unix)
• All of this took place in the early 1970s when:

– Hardware was much slower and much more expensive
– Memory was incredibly expensive (> $0.01/bit!)
– Operating systems and compilers were expensive
– Operating systems were difficult to use (e.g., JCL)
– On-line access was limited
– Serious coding was done in assembler
– Writing operating system code in assembler was necessary

11

Predecessor of Unix

• In the 1960s, several big players teamed up to
create the greatest operating system that never was,
known as “Multics”

• Multics was good, but it was too big – it didn’t fit
well on any existing hardware

• It didn’t work out…

12

A short history of C and Unix (cont.)

• Two researchers are AT&T decided
to use some of the technologies
developed in the Multics project in a
new OS (this was a home project)
– All because they wanted to run a Space

Travel game, actually
• They called it “Unix” as a parody of

Multics, since it was much simpler,
and light weight.

Ken Thompson

Dennis Ritchie

13

A short history of C and Unix (cont.)

• Ritchie and Thompson found they needed a new
language to quickly implement the UNIX
operating system

• Thompson created “B” by modifying an existing
language called BCPL (created by London and
Cambridge Univ., UK), in order to fit onto the
PDP-7’s 8K word memory size

• Later they decided to switch to the new PDP-11
and created a new version of B….

14

Thus was born

15

A short history of C and Unix (cont.)

• In 1978, Dennis Ritchie and Brian Kernighan
published a book describing the C language
– The book was the de facto standard for C
– It became the best selling computer book ever

(~500,000 copies sold)

Second edition, 1988

16

A short history of C and Unix (cont.)
• By the early 1980’s, C and Unix became very

widely used, especially on the very popular and
cheap (at that time) DEC Vax machines

• The PC makers soon realized C’s advantages over
BASIC, and provided implementations for the PC
market

• Other implementations arose, and the C language
began to change under corporate influences

• Soon it became clear that a formal standard was
needed, just like every other language had

17

A short history of C and Unix (cont.)

• In December, 1989, ANSI formally adopted
“Standard X3.159-1989”, or “ANSI-C”

• C is now governed by various standards (e.g.,
ANSI)
– But they got a late start – there was already a lot of C

code in existence!
• Rewrite everything in order to make

standardization easier???
– NO….

18

A short history of C and Unix (cont.)

• C and Unix have a very intertwined history
• Unix was first implemented in assembly on the

PDP-7 and PDP-11, and later rewritten in C when
a compiler was available

19

First Users

• Bell Labs Patent Dept. (nroff and troff)
• Universities (free OS and compilers)
• Later on UC Berkeley Grads Jumped into it
• Two main threads: Bell Labs Unix ----- BSD Unix
• Newer Unix has features from both
• Multi users were allowed concurrently

20

Unix

• Provided hierarchical directory structure
• Allowed files and processes have a location in the

directory structure
• Provided services to create, modify & destroyed

processes & files
• Allowed sharing of resources (CPU, memory, disk

space)
• Communication pipe (medium speed) and sockets

(different machines)

21

Unix (cont)

• Utilities (editors, compilers, shells, GUI, sorting,
etc)

• Open system (source code available)
• From C you can access everything (parallel

processing, interprocess communication, file
handling

• Large number of utilities
• Portable OS

22

Unix file structure, directories, etc.

• Files and directories (“folders” in Windows)
– Files contain text, data, programs, etc.
– Directories contain files (and other directories, a.k.a.

subdirectories)
• Directories are structured in a tree, with the /

directory at the root of the tree
– That’s the directory named “/”
– Directories have only one parent directory (well…)
– “ . ” refers to the current directory
– “ . . ” refers to the parent directory

23

File structure, directories, etc. (cont.)

/bin /cs /etc /local /var /lib /usr

/class /faculty /guest /mail /student

/konheim /omer /mturk /teo /holl

/

. cshr c

. l ogi n

. pl an
mbox
sr c

24

In a networked environment…

/bin /cs /etc /local /var /lib /usr

/class /faculty /guest /mail /student

/konheim /omer /mturk /teo /holl

/

The files and directories might physically reside on
many different machines (color-coded here)

25

Unix Philosophy

• Utilities: Do one thing well and then combine
utilities via a pipe (who -> sort -> terminal)

• Solve problem with multiple utilities
• Super-User and partial super-users (may be

dangerous)

26

Unix and Linux

• Linus Torvalds, working on a CS degree
in Finland in 1991 decided to write his
own operating system for the Intel (i386)
platform, basing it on Tanenbaum’s
“Minix” (a small UNIX look-alike). Not
the first to do this, but it was FREE.

• The rest is history….

27

Object Oriented Programming

• Emphasis on Data -> Fit Language to problem
(rather than fit problem to procedural language)

• Classes and objects
• C++ :

– Information hiding (safeguards from improper use)
– Polymorphism (multiple defs for opers and functions)
– Inheritance (derive new classes from other ones)
– Generic programming (type ind)

28

C++

• Bjarne Stroustrup (early 80s)
• Easier to write good programs
• Based on C and inspired by Simula 67
• Portability (main goal)
• g++ prog.C

29

Compiling in C
Source Code

Preprocessor

Compiler

Assembler

Link Editor

Object Code

Executable Code

KEYKEY

Output (to
file or memory)

Phase of compilation
(specific program
or subprogram)

Source Code
Source Code

Object Code
Object Code

Assembly CodeAssembly Code
Assembly Code

30

Source code

• C source code is written in text files. By
convention, these files are given an appropriate
name and a “.c” extension.

• Header files (“include files”) also contain C
source code, but they should not include actual
instructions, functions, variables, etc.
– Definitions, constants, function declarations, compiler

directives….

31

Intermediary files
• gcc - E produces source code after preprocessing

– Prints to standard output
• gcc - S produces assembly code (.s)
• gcc - c produces object (machine) code (.o)
• gcc produces an executable file

– - o pr og produces a program called “prog”
– . / pr og runs the program

32

Compiling in C (via gcc)
Source Code

Preprocessor

Compiler

Assembler

Link Editor

Object Code

Executable Code

Source Code
Source Code

Object Code
Object Code

Assembly CodeAssembly Code

pr og. c
pr og. h

pr og. s

pr og. o

pr og

*

Assembly Code

33

C preprocessing

#i ncl ude <st di o. h>

mai n()

{
i f (1)

pr i nt f (“ I t s summer ! \ n”) ;
}

Lines starting with # are Pre-
Processor directives. They are not
statements, hence do not end in ‘;’

The C preprocessor has many features – and pitfalls.
We will cover this later on.

