
Introduction to C, C++, and Unix/LinuxIntroduction to C, C++, and Unix/Linux

CS 60
Lecture 20: Templates & STL

→ Templates, STL
→ Reading [KR] Chapters 1-7
→ Read [So] chapters 1, 3, 4 (Boolean), 9,

13, 14 & 18.

2

Notes

• Questions?

3

C++ Templates

• Templates allow you to efficiently write generic
functions and classes that work for several
different data types
– Makes overloaded functions
– Better than writing a function/class for each type
– Better than writing macros
– Can be tricky, though

• The Standard Template Library (STL) provides
C++ with a number of useful templates and
efficient ways to access their data

4

Templetes for Class stack

We looked at several examples through the progs
web page.

5

The Standard Template Library (STL)

• The STL is a general purpose library of data
structures and algorithms, using the C++ template
mechanism

• Its components are heavily parameterized – almost
every component in the STL is a template

6

Main STL components
• At its core are container classes – classes whose purpose is

to contain other objects
– These are templates that can be instantiated to contain any type of

object
• The STL also includes a large collection of algorithms that

manipulate the data stored in containers
– These are global functions, decoupled from the classes

• Function Objects: Objects that act like functions.
• The STL defines iterators – a generalization of pointers –

that allow access to the data inside containers
– Forward, reverse, random

7

STL containers
• The basic STL containers:

– vector : like an array and dynamic memory
– deque : double ended queue
– priority-queue
– stack, queue, bit set
– list : doubly-linked list
– set : an unordered set of unique items
– multiset : nonunique set
– map : an associative array: key/value lookup
– multimap : a map that allows multiple values per key

8

vector<int> r(5); // 5 ints

vector<double> scores(n); //n doubles

//You may use scores[i], [] is overloaded

size(): # of elements in container

swap(): Exchanges contents

begin(): Iterator (ref to 1st element)

end(): Iterator (ref to one after last)

vector<double>:: iterator pd;

vector<double scores(n);

pd=scores.begin();

*pd=22.3; ++pd;

for(pd=scores.begin();pd!=scores.end();pd++)

9

Other Functions

erase();

insert();

find();

for_each()

random_shuffle()

sort();

10

vector<int> V;
V.insert(V.begin(), 3);

list<int> L;
L.push_back(0);
L.push_front(1);
L.insert(++L.begin(), 2);
copy(L.begin(), L.end(), ostream_iterator<int>(cout,
" "));

template <class InputIterator, class T>
InputIterator find(InputIterator first,

InputIterator last, const T&
value) {

while (first != last && *first != value) ++first;
return first;

}

Examples

In conclusion...

12

What we’ve learned

• Basics of Unix/Linux
– commands, editing, compiling, debugging, shell

scripting, ...
• The C language

– Types, operators, memory and pointers...
• The C++ language

– Classes, function overloading, exceptions, templates

And there is all there is and there isn’t any
more…

