
CMPSC 60: Week 4 Discussion

What is compiling

gcc steps
– preprocessing – you know what this does
– compilation – produces assembly code
– assembly – creates an object file (.o)
– linking – links .o files to create executable

gcc non-optional options

-c – compile but don’t link
-o – executable file name
-l<library> – link with library
-L<dir> – non-standard directory for libraries

gcc optional options

-Wall – print lots of warnings
-W – print fewer (but sometimes different)
warnings
-pedantic – strict ANSI C standard
-g – generate symbol table for debugging
-O<1-3> - compile with optimizations

Why we need Makefiles

Source files can be
dependent on each
other in very
complicated ways.
Saves time of having to
remember what to
recompile, or recompile
everything

Makefile syntax

Target – the name of a task – can be
compiling a file, or a number of other things
Dependency – a target will often have
dependencies – other targets that need to be
done before it
Up to date – a file is more recent than all the
files it depends on

Make tips

Goto cd ~/jwither/cs60/week4 for makefile
examples
In a given target like:
Build:

gcc -o exe input.c helper.c

The space before the command (gcc) is a single tab
character – spaces don’t cut it

Dependencies

stimulate: stimulate.o inputs.o ouputs.o

gcc -o stimulate stimulate.o inputs.o ouputs.o

The things after the : on the first line are the dependencies. In this
case to build the program stimulate we need to have an up to
date stimulate.o, inputs.o, outputs.o Otherwise those targets
need to be executed first. Dependencies can also be files, in
which case it just checks to see what’s up to date i.e.

stimulate.o: stimulate.c

gcc -c stimulate.c

Abbreviations

$@ - full target name
$* - target name without suffix

stimulate: stimulate.o inputs.o ouputs.o

gcc -o stimulate stimulate.o inputs.o ouputs.o

Becomes
stimulate: $*.o inputs.o ouputs.o

gcc -o $@ $*.o inputs.o ouputs.o

Macros

MACRONAME = macro
With the rule:

OBJECTS = stimulate.o inputs.o outputs.o

stimulate: stimulate.o inputs.o ouputs.o

gcc -o stimulate stimulate.o inputs.o ouputs.o

Becomes
stimulate: $(OBJECTS)

gcc -o $@ $(OBJECTS)

Suffix rules

Rules to make commands shorter and more
general – can be easily reused
Read pages 175-176 of Gnu Toolkit book

How to run make

Type make
– Executes first target defined – so make the first

rule the rule to build your executable project
Other targets can be executed as well by
typing: make <target>

Other handy make targets

Target to build your executable – make sure to have this as the
first rule

all: <whatever you need>
Target to get rid of all old files – can be useful to make sure

everything is up to date
clean:

rm -f *.o *~ #*# core*

Make a brand new executable
fresh: clean all

Makedepend

Handy program that can be used to figure
out dependencies for you

depend:

makedepend -- $(INCLUDES) -- $(SOURCES)

Look at example makefiles for more

Write your own Makefile

Compile options: -g –Wall –pedantic –W
Needed libraries: -lm
Main file main.c and helper file that final
executable depend on (helper.c)

Good solution

CC = /usr/bin/gcc
CFLAGS = -g -Wall -pedantic -W
LIBS = -lm

APP = basic
OBJS = main.o helper.o

all: $(APP)
$(APP): $(OBJS)

$(CC) $(CFLAGS) -o $(APP) $(OBJS) $(LIBS)
main.o: $*.c

gcc $(CFLAGS) -c $*.c
helper.o: $*.c

gcc $(CFLAGS) -c $*.c
clean:

rm -f *.o *~* $(APP)

Also works (because of default suffix rules)

CC = /usr/bin/gcc
CFLAGS = -g -Wall -pedantic -W
LIBS = -lm

APP = basic
OBJS = main.o helper.o

all: $(APP)
$(APP): $(OBJS)

$(CC) $(CFLAGS) -o $@ $(OBJS) $(LIBS)
main.o:
helper.o:
clean:

rm -f *.o *~* $(APP)

	CMPSC 60: Week 4 Discussion
	What is compiling
	gcc non-optional options
	gcc optional options
	Why we need Makefiles
	Makefile syntax
	Make tips
	Dependencies
	Abbreviations
	Macros
	Suffix rules
	How to run make
	Other handy make targets
	Makedepend
	Write your own Makefile
	Good solution
	Also works (because of default suffix rules)

