
Prospectus

NP-Completeness: Theory and Applications

Teofilo F. Gonzalez
Department of Computer Science

University of California
Santa Barbara, CA 93106-5110

teo@cs.ucsb.edu

July 6, 2007

1 Introduction

Even before the 1970s a distinction was made between problems that could be
solved efficiently (polynomial time) from those that did not seem to have such
algorithms. Among the early researchers that made this distinction were von
Neumann, Cobham, and Edmonds. At that time, all the problems that could
not be solved efficiently (or computational difficult problems) seemed for the
most part different from each other. In the early 1970s a class of (apparently)
intractable (or computationally difficult) problems called NP-Complete was
formally introduced. Cook established this class of problems, and satisfia-
bility (SAT) was the first problem to be proven to be NP-Complete. He
also showed that 3-SAT and subgraph isomorphism belong to this class of
problems, and conjectured that there were other problems that shared this
property. A year later Karp redefined this class of problems and showed that
several well-known problems were also NP-Complete. These problems were
decision version of classical optimization problems from several research ar-
eas. From then on problems in virtually all (quantitative) research areas have
been shown to be NP-Complete and Karp’s definition became the standard.
Working independently in the Soviet Union, Levin established around the
same time a practically equivalent class of problems. He showed that many
combinatorial problems can be proven to be as hard as the tiling problem
which, he had known for a some time, was universal, i.e. at least as hard as
any search problem.

1

Before we go further let us consider the following problem. Suppose that
we have a set Q of n people who have interacted with each other for some
time. These interactions have resulted in a list of pairs of incompatible indi-
viduals L = (l1, l2, . . . , lm), i.e., the two people in each pair are incompatible.
The compatible meeting (CM3) problem is given any set of people Q and
any list L of pairs of incompatible individuals, determine whether or not
each person in Q can attend one of three meetings in such a way all the
people attending each meeting are compatible1. This is a decision problem,
meaning that its answer is simply “yes” or “no”. A yes-instance (resp. no-
instance) is an instance whose answer is “yes” (resp. “no”). Computationally
the CM3 problem is time consuming to solve. Each individual may be as-
signed to any of the three groups, therefore there are 3n possible assignments
of individuals to the three meetings. Checking all the possible assignments
for a valid one takes in the worst case O(n3n) time. With the worst case
being when the answer to the problem is “no”. It is simple to see that many
of the assignments are repeated, so there are algorithms that check fewer
assignments and are considerable faster than the “näıve” algorithm. But
there is no known algorithm that takes polynomial time with respect to n,
e.g., O(nk) for some fixed constant k. Table 1 lists the actual and estimated
times taken by the “näıve” O(n3n) time algorithm for the CM3 problem.
For n = 33 this algorithm takes about 30 years to compute the answer to a
no-instance. An “improved” algorithm can be made to run much faster, but
for n around 50 it would take more than a century to solve a no-instance.
Even on a machine that is 10000 times faster the algorithm would take 1%
of a year (about 3.65 days). But then for n about 70 it would take a century.
For n equal to about 5000, it would take enormous hardware improvements
to speed-up the running time of the “improved” algorithm so that it takes
only one century to solve a no-instance.

The CM2 problem is defined as the CM3 problem, except that the problem
is to partition the set of people into two meetings such that all the people
assigned to each meeting are compatible. The CM2 problem can be solved
in polynomial time even though it is very similar to the CM3 problem and
there are 2n possible assignments of individuals to the two meetings. The
simplest polynomial time algorithm for this problem is based on depth-first

1This problem can be viewed as the problem of coloring the vertices of a graph with

at most three colors. Each person is represented by a vertex in a graph which is called

the incompatibility graph. The incompatibility between two individuals in this graph is

represented by an edge joining the two corresponding vertices. The problem is to color

the vertices with one of three colors so that no two adjacent vertices are assigned the same

color. A 3-coloring for the incompatibility graph corresponds to the meetings when the

colors are viewed as labels for the meetings.

2

n 18 21 24 27 30 33 36 39

yes-instance .06s .6s 5.7s 56.8s 9.4m 1.6h 16h 6.7d
no-instance 1.5m 47m 23.5h 11.8d 1y 30y 9c 270c

s: seconds, m: minutes, h: hours, d: days, y: years, and c: centuries.

Table 1: Running times for solving the CM3 problem via the “näıve” algo-
rithm that enumerates all assignments of people to meetings. The values less
than an hour are actual times and the ones larger than 1 hour are estimated.

search (dfs), a standard procedure used to solve many graph problems. The
intriguing aspect is that these two very similar problems are quite different
when it comes the computational time needed to solve them.

The verification of a yes-answer for the CM3 problem (called the verifica-

tion problem) is given any instance I of the CM3 problem and an assignment
A of people to meetings, determine whether or not the assignment A is a
valid one for the instance I. This verification problem is simple to solve, we
just need to make sure that every person in Q is assigned to one of the three
meetings and check that every pair of incompatible people are assigned to
different meetings. This can be easily done by an O(n + m) time algorithm.
This algorithm can be easily adapted to solve the CM2 verification problem.

As an analogy, suppose one asks in a take-home exam for a valid as-
signment of people to meetings in a relatively small yes-instance of the CM3

problem. Each student would have to solve the problem instance, which
would be time consuming. On the other hand, the grader’s task is much
simpler, even when n is about 100, as the task requires only O(n + m) time.

Clearly, verifying a yes-answer for the CM3 problem seems to be a much
simpler problem to solve than solving the CM3 problem. There is a large class
of problems for which verifying a yes-answer can be performed in polynomial
time with respect to the size of the problem instance, but there is no known
efficient algorithm to solve the problem. NP-completeness theory says that
if an algorithm that takes polynomial time with respect to the input size can
be developed for the CM3 problem, then a large class of problems can also
be solved in polynomial time. Furthermore, a polynomial time algorithm to
solve anyone of these problems can be constructed automatically from an
algorithm that verifies a yes-answer for the problem. This seems too good to
be true, and most likely such polynomial time algorithm for the CM3 does not
exist. Informally, all NP-complete problems are like the CM3 problem, in the
sense that a polynomial time algorithm for one of these problems implies the
existence of a polynomial time algorithms for all the NP-complete problems.

3

On the other hand, if for one of these problems one can show it cannot be
solved in polynomial time, then none of the NP-complete problems can be
solved in polynomial time. Let us now define this notion in a more formal
setting.

The class of problems P (easy to solve) are all decision problems that
can be solved in polynomial time. The CM2 problem falls into this category
(P). The class of problems NP (easy to check) are all decision problems for
which yes-answers can be verified in polynomial time. In other words, each
problem S in NP has a verification algorithm A and the property that for
every instance I of S there is a “fixed” structure F (I) such that algorithm A,
operating in polynomial time with respect to the length of I, can determine
whether or not the structure F (I) “proves” that the instance I is a yes-
instance. The structure F (I) must be able to represent at least one feasible
solution for each yes-instance I. The CM3 and CM2 problems defined above
are clearly in NP . But the CM3 problem is not known to be in P . In other
words, for the CM3 problem one can verify a yes-answer in polynomial time,
but it is not known whether it can be solved in polynomial time.

Clearly, every problem that can be solved in polynomial time can be ver-
ified in polynomial time, i.e., every problem in P is in NP (e.g., the CM2

problem). But it is not known whether the converse is true. Therefore,
P ⊆ NP . The questions is whether or not P = NP . This is an important
question. Now suppose that P = NP and we have a polynomial time algo-
rithm to solve an NP-Complete problem. Then every problem for which a
yes-answer can be verified in polynomial time can be solved in polynomial
time. Furthermore, the theory of NP-completeness will provide us with one
such algorithm from a polynomial time verification algorithm. This would
simplify programming considerably because automatically one will generate
an efficient algorithm to solve a problem from an efficient algorithm to ver-
ify a yes-answer. This seems to good to be true, and the conjecture is that
P 6= NP . I.e., there are some problems in NP that cannot be solved in
polynomial time. The next question is whether or not the CM3 problem is
one of this computationally intractable problems (every algorithm to solve
this problem takes exponential time with respect to the input length).

The class of NP-Complete problems is the set of “hardest” problems in
NP . A problem Q in NP is said to be among the hardest in NP if a
polynomial time algorithm for Q implies there is a polynomial time algorithm
to solve every problem in NP . On the other hand, if one can show that
an NP-complete problem cannot be solved in polynomial time, then clearly
P 6= NP . The conjecture is that P 6= NP . The P versus NP question has
been a central problem in CS for several decades and it has been referred to as
the most important open problem in CS. This problem is also one of the seven

4

so called “millenium problems” identified by the Clay Mathematics Institute
CTI. To stimulate research this institute has offered a million dollar award
to any person or group of people who solve any of these millenium problems.
Though, a “really fast” algorithm to solve NP-Complete problems is worth
considerably more than that.

The CM3 problem defined above is an NP-complete problem. So if P 6=
NP , then there does not exist a polynomial time algorithm to solve the CM3

problem. On the other hand, if there is a polynomial time algorithm to solve
the CM3 problem, then there is a polynomial time algorithm to solve all the
problems in NP . The CM3 problem, and every NP-Complete problem, is
well defined and all its input parameters are known even before attempting
to solve any problem instance. The output for every problem instance is
simply yes or no. However, there does not seem to be any way, or we do not
know how, to solve these problems efficiently.

Another important issue is the meaning of computational tractability.
One normally equates an algorithm that takes polynomial time with an “ef-
ficient” algorithm. But this is not really true in the sense that an algorithm
that takes O(n100), where n is the input size, is not really an efficient one. The
interesting point is that there is no known “efficient” algorithm to solve any
NP-Complete problem even under this very relaxed notion of “efficiency”.
Tractability has been equated to “efficiently solvable”. The non-existence
of such algorithms has been equated to computational intractability. NP-
Complete problems are said to be intractable problems since there is no
known polynomial time algorithm for their solution and it is likely none
exists (i.e., P 6= NP).

The key component in the theory of NP-Completeness is that of polyno-
mial transformation (or reduction). This notion had been used before the
1970s. After Cook’s Theorem, to establish that a problem Q is NP-complete
one needs to show that Q is in NP and that there is an NP-Complete problem
that polynomially transforms to problem Q. A transformation from problem
Q1 to problem Q2 is an algorithm that for every instance I of Q1 constructs
an instance f(I) of Q2 in such a way that f(I) is a yes-instance of Q2 if,
and only if, I is a yes-instance of Q2. A transformation is polynomial if the
algorithm takes polynomial time with respect to the input size (i.e., |I|).

The immediate implication of a polynomial time transformation from a
problem Q1 to a problem Q2 is that any algorithm that solves problem Q2

can be used to solve Q1. The time complexity of the resulting algorithm is
the time required to perform the transformation plus the time required to
solve the resulting problem instance. On the other hand, if one can show
that problem Q1 cannot be solved in polynomial time, then Q2 cannot be
solved in polynomial time. Suppose we could polynomially transform the

5

CM3 problem to the CM2 problem, then we would have a polynomial time
algorithm to solve the CM3 problem. The polynomial time algorithm is
given an instance I of the CM3 problem and constructs in polynomial time
an instance of the CM2 problem which is then solved by a polynomial time
algorithms for the CM2 problem. The answer to this latter problem is the
solution to the original problem. But remember that there is no known
polynomial transformation from CM3 to the CM2 problem.

On the other hand, it is very simple to polynomially transform the CM2

problem to the CM3 problem. The idea is to add a new person, that is incom-
patible with all the other people. Clearly, if the resulting problem instance
is a yes-instance of the CM3 problem if and only if the original instance of
the CM2 problem is a yes-instance. However, this polynomial time reduc-
tion does not add any new information because we are reducing an “easy”
problem to a problem that may be “easy” or “hard”. So a polynomial time
reduction from a problem Q1 to a problem Q2 does not tell us anything new
about Q2 when Q1 can be solved in polynomial time. Also, if Q2 cannot be
solved in polynomial time, there is again no implication for Q1. In this case,
we are transforming an “easy” or “hard” problem to solve, to a problem that
is “hard” to solve. Clearly, polynomial transformations are not symmetric.
However, if one polynomially transforms Q1 to Q2 and Q2 to Q1, then both
Q1 and Q2 are computationally equivalent problems in the sense that Q1 is
in P if and only if Q2 is in P .

During the 1970’s the number of known NP-Complete problems grew
tremendously as researchers showed that hundreds of problems were NP-
Complete. These problems included the following traditional problems: trav-
eling salesperson, quadratic assignment, knapsack problem, timetable prob-
lems, bin packing, graph colorability, independent set, vertex arrangements,
generalized spanning trees, Steiner trees, graph partitioning, generalized flow
problems, set cover, partition, scheduling parallel machines, (open, flow
and job) shop scheduling, inequivalence of finite automata, dynamic stor-
age allocation, code generation, inequivalence of programs with arrays, logic
problems, etc. During the 1980’s there was growth in the number of NP-
Complete problems arising from emerging application areas. The number of
NP-Complete problems has been increasing steadily since then.

Because of the many new applications, there are quite a few new prob-
lems being identified every day. Efficient exact and approximate solutions
to these problems make these applications run smoothly. NP-Completeness
plays an important role in this process, by identifying which problems can
and cannot be currently solved efficiently. Due to the extensive literature on
NP-Complete problems, publication of such results is becoming more difficult
with the passage of time. Because of this many authors do not even attempt

6

to publish such results or just publish a small summary of the result. In
some cases authors just indicate that it is very likely that a given problem
is NP-Complete. Sometimes this is because a simple reduction and its cor-
rectness proof do not seem possible. The aim of this handbook is to compile
a large number of reductions so that the readers can identify the different
transformation patterns which can then be used to simplify the process of
establishing simple polynomial time transformations.

An important research aspect is to identify the simplest versions (with
respect to problem parameters) of a problem that remain NP-Complete.
It is interesting to note that as we vary problem parameters the problem
jumps rather quickly from tractable to intractable (under the assumption
that P 6= NP). This may provide us with some insight as to what makes
a problem computationally intractable. For example, the CM2 problem is
in P , but the CM3 problem is NP-Complete. Increasing the number of
meetings from two to three (in the problem) makes the problem intractable.
Many problems exhibit similar characteristics. Another reason for identify-
ing “easy” and “hard” subproblems is that there are many approximation
algorithms based on restriction. This means that an optimal or suboptimal
solution to a restricted version of a problem may be used as a suboptimal
solution for the original problem. NP-Completeness theory help us identify
the difficulty of solving restricted versions of problems and thus guide us
through the process of designing provably good approximation algorithms.
Approximation algorithms, metaheuristics, and randomized algorithms have
been used with varying degrees of success to generate optimal and suboptimal
solutions quickly for instances of many optimization problems whose corre-
sponding decision problems are NP-Complete. However, none of these algo-
rithms can generate in polynomial time an optimal solution all of the time.
But for many problem instances they may provide optimal solutions quickly,
and for all problem instances they may provide good solutions quickly.

In principle one may transform any NP-Complete problem to any other
NP-complete problem. However, some of the transformations are more natu-
ral or simpler than others. All the known polynomial transformations follow
a set of patterns. In the first portion of the handbook we will provide ex-
amples of the basic transformations. For example SAT (satisfiability) is a
common source for reducibility. Other good sources are partition and 3-
partition for scheduling problems; planar-SAT and planar vertex cover for
planar, 2-dimensional and geometry problems; etc. The latter part of the
handbook will include chapters for different application areas. The main idea
is to summarize the NP-Completeness results in research areas and present
the basic techniques used to establish NP-Completeness results for problems
in different application areas.

7

A good portion of the NP-Complete problems have only theoretical value
due the limited, or non-existent, direct applicability for the problem at hand.
However, even these results are important because such problems may be
used to show that other problems arising from real-life applications are also
NP-Complete. Our goal for this handbook is to collect a wide portion of
the NP-Completeness results in as many areas as possible, as well as to
introduce and explain in detail the different approaches used to show that
these problems are NP-Complete. There will also be a chapter discussing
the most important open problems in established as well as in emerging
application areas.

2 Features

This handbook will be a collection of a wide range of information about NP-
Completeness for problems in many different research areas. This volume will
be partitioned into two parts: theory and applications. In order to facilitate
the access to the handbook there will be a roadmap to the handbook in
the introduction. This chapter will also include basic notation. It will also
include basic NP-Completeness results as well as inapproximability results,
and complexity classes beyond NP . There will be a chapters on strong NP-
Complete problems, historical background and open problems.

We propose to include one or more chapters for application areas (or prob-
lems) including: packing (including bin-packing and its variants), traveling
salesperson (and its variants), Steiner trees (and its variants), clustering,
scheduling, partitioning, graph problems, bioinformatics, network routing
(computer, optical, wireless or sensor), CAD, computational geometry, data
bases and mining, Internet applications, etc.

3 Intended Audience

This handbook will be an excellent reference book for a large audience. Es-
tablished researchers will be able to find in this handbook results in areas
they have not had the opportunity to explore in the past. Graduate students
as well as newcomers, who may or may not intend to pursue research in theo-
retical aspects of computation, will find an accessible body of work that will
enable them to understand NP-Completeness at a fundamental level and will
be able to use it as a reference when trying to establish NP-Completeness
results for problems in computer science, computer engineering, operations
research, applied mathematics as well as for problems arising in several other

8

disciplines. Increasing numbers of the mathematics, science and engineer-
ing graduate students and almost all the computer science, computer en-
gineering and operations research graduate students will have to deal with
NP-Completeness more than once in their professional careers. Our hand-
book will provide them with a strong starting point. To fully benefit from
this handbook one needs a solid background in discrete mathematics and
algorithms.

Our goal is to provide a comprehensive view of NP-Completeness, its
theory and applications. This handbook will provide different approaches
to establish NP-Complete results which have been successfully applied to
several problems. The practitioners will be able to find different possible
reductions that may apply to the problem at hand.

4 Market Information

The main book for NP-Completeness problems is the classical book by Garey
and Johnson published in 1978. Over the years there have been 25 journal
columns by Johnson which may be considered as extensions of the book.
Almost all of these columns appeared before 1992. Every computational
complexity and almost every algorithms textbook has one or two chapters
on NP-Completeness. These chapters include basic results and simple trans-
formations. The proposed handbook will have extensive information and
details for problems in many application areas. Undergraduate and graduate
CS (as well as some mathematics and operation research) courses have cov-
ered basic NP-Completeness results. As we said before, we are aiming this
handbook at computer science, computer engineering and operations research
graduate students as well as those in mathematics, science, and engineering.
Advanced undergraduates will be able to understand the basic material. To
fully benefit from this handbook students need a solid background in dis-
crete mathematics and algorithms. The handbook will be a reference book
for years to come.

Previous Books.

• Algorithms books like the one by Horowitz, Sahni and Rajasekaran
(Computer Algorithms in C++, CS Press); Sedgewick (Algorithms);
Kleinberg and Tardos (Algorithm Design); Dasgupta, Papadimitriou
and Vazirani (Algorithms); and numerous other textbooks normally
contain one or two chapters dedicated to NP-Completeness. This is
perfect for undergraduate courses since NP-Completeness is just one of
the course components.

9

• The book by M. R. Garey and D. S. Johnson (“Computer and In-
tractability: A Guide to the Theory of NP-Completeness, 1978, W. H.
Freeman and Company) is an excellent source for NP-Completeness.
The book has been followed over the years by 25 columns. An updated
version for this book is under preparation.

10

5 Table of Contents (Tentative)

Each entry in the first part will be a chapter. The second part (applications)
will includes several chapters for each application area/problem.

• Theory

– Introduction / Notation / Handbook Roadmap - T. Gonzalez (UC
Santa Barbara)

– Historical perspective and recent advances

– Reducibility and Cook’s Theorem

– Basic Reductions

– Typical Reductions

– Strong NP-Completeness and Its Implications.

– NP-hard problems

– Planar and 2D Reductions

– Efficient Transformations

– Approximation classes

– Inapproximability

– Related Complexity Classes

– Open Problems

• Applications

– Packing

– Routing (TSP, Vehicle, etc)

– Trees (Steiner, spanning, etc.)

– Scheduling

– Graph Problems

∗ Selecting

∗ Partitioning

∗ Arrangements

∗ Embedding

∗ Miscellaneous

– SAT

11

– Flow Problems

– Bioinformatics

– Superstring and Supersequence Problems

– Message Routing (computer, optical, wireless and sensor)

– VLSI & Rectilinear Steiner Trees

– Image Processing

– Logic

– Computational Geometry

– Code Generation and Register Allocation

– Protocol and Security

– Data Bases, Query Languages, and Mining

– Internet

– Games and Puzzles

– Miscellaneous

12

