Homework 8

Posted: Friday, Nov 20, 2015 – 11:59pm
Due: Thursday, Dec 3, 2015 – 3pm (HFH 2108) or 3:30pm (in class)

Task 1 – Countable and Uncountable Sets (6 points)

Throughout this task, let \( \mathbb{N} = \{0, 1, 2 \ldots \} \) be the set of natural numbers. Remember that a set \( S \) is **countable** if there exists a surjective function \( \phi : \mathbb{N} \to S \), i.e., for every \( x \in S \) there exists some \( i \in \mathbb{N} \) such that \( \phi(i) = x \).

a) Show that \( \mathbb{N} \times \mathbb{N} \), i.e., the set of pairs \((x, y)\) such that \( x, y \in \mathbb{N} \), is countable.

b) Show that the set \( \{S \subseteq \mathbb{N} : S \text{ is finite} \} \) is countable.

c) Is the set \( \{S \subseteq \mathbb{N} : S \text{ is not finite} \} \) countable?

   **Hint:** Use c). Moreover, is the power set \( 2^\mathbb{N} \) countable?

Task 2 – Halting Problem (8 points)

a) Give a TM \( M \) with input alphabet \( \Sigma = \{a, b\} \) recognizing the language \( L = \{a^n b^n : n \geq 0\} \) — i.e., such that \( L(M) = L \) — and such that additionally \( M \) never halts on any input \( w \notin L \).

b) Let \( \Sigma = \{0, 1\} \) and \( \Gamma = \{0, 1, a, b, \square\} \). Consider the following problem: Given a TM \( M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) and an input \( w \in \Sigma^* \), we want to decide whether \( M \) ever writes the symbol \( a \) on its tape when run on input \( w \).

   Explain why the above problem is undecidable!

   **Hint:** Show how given a TM \( M^* \) that decides the above problem, one can solve the halting problem for Turing Machines with input alphabet \( \Sigma \) and tape alphabet \( \Gamma = \{0, 1, \square\} \). You can assume that the latter problem is undecidable.

c) Consider the **Strong Halting Problem (SHP)**: Given a TM \( M = (Q, \Sigma, \Gamma, \delta, q_0, F) \), we want to decide whether \( M \) halts on every input, or whether there exists some input on which \( M \) does not halt.

   Explain why the SHP is undecidable!
Task 3 – The Post Correspondence Problem  (8 points)

a) Is the following PCP instance a YES-instance? Explain your answer!

```
a  ab  b  bba
bb  a  bba  a
```

b) Is the following PCP instance a YES-instance? Explain your answer!

```
aab  baa  aa
abb  b  bb
```

c) Explain why the PCP for $\Sigma = \{1\}$ is decidable.

**Hint.** Explain first how to this problem connects to the problem of deciding whether, for given integers $x_1, \ldots, x_n \in \mathbb{Z}$ there exists $i_1, \ldots, i_n \in \mathbb{N}$, not all zero, such that $\sum_{j=1}^n i_j \cdot x_j = 0$.

d) Show that the problem of deciding whether two CFGs $G_1$ and $G_2$ are such that $L(G_1) \cap L(G_2) \neq \emptyset$ (i.e., they generate at least one common string) is undecidable.

In particular, given a PCP instance $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^*$, build two grammars $G_1$ and $G_2$ which generate a common string iff the instance is a YES-instance, and such that $L(G_1)$ and $L(G_2)$ are disjoint if it is a NO-instance.

Task 4 – Closure Properties of Recursive Languages  (8 points)

a) Show that if $L_1$ and $L_2$ are recursive, then $L_1 \cup L_2$ is recursive. It is also true that if $L_1, L_2$ are only recursively enumerable, then $L_1 \cup L_2$ is recursively enumerable?

b) Show that if $L$ is recursive, then its complement $\overline{L}$ is recursive.

c) Show that if both $L$ and $\overline{L}$ are recursively enumerable, then $L$ is recursive.

**Hint:** Give a high-level explanation (i.e., no low-level details) of how you would build a TM for the desired language given TMs for the given languages. Be careful to make sure the resulting TM is valid, i.e., no transition leaves the final state. In some cases, it may be easier to show that a two-tape TM exists (discussed in Tuesday’s class), and use the fact that there exists a corresponding single-tape TM.