
Towards a storage system for connected homes

Trinabh Gupta (UT Austin) Amar Phanishayee Jaeyeon Jung Ratul Mahajan

Microsoft Research

1 Introduction
Homes are increasingly filled with connected de-
vices such as wireless door locks, remotely control-
lable thermostats, and security cameras. Home au-
tomation systems, which used to be prohibitively
expensive to average consumers, are now offered
at an affordable price, accelerating the adoption
of “smart” devices in the home. The advances
in devices also enable researchers and practition-
ers to develop new services and applications for
householders—PreHeat uses occupancy sensing to
efficiently heat homes [19]; a DigiSwitch display
supports elders who reside separately from their
caregivers with whom they share sensed activity
data in the home [5]; and a Digital Neighbourhood
Watch (DNW) is proposed to help neighbors detect
suspicious activities (e.g., previously unseen cars
driving by several times) in the neighborhood by
sharing security camera images [4].

To facilitate such home technology develop-
ments, platforms like HomeOS [6] and Mi Casa
Verde [1] provide a standard way to communicate
with a range of devices and a set of APIs to ease
the implementation of applications. However, stor-
age abstraction for applications in the home is not
yet clearly defined. For instance, HomeOS exposes
local file system APIs to HomeOS applications, but
has no built-in support for sharing data with other
applications that may run remotely. Commercial
devices typically come with a tailored storage solu-
tion (e.g., Withings wireless scales transmit data to
withings.com by default) and as a result, data
from each device is stored in silos, causing a data
management nightmare.

We first discuss the key requirements for a stor-
age system that supports connected devices and ap-
plications in the home. We ground our discus-

sion with the use cases derived from the afore-
mentioned examples—PreHeat, DigiSwitch, and
DNW—as well as our own experience of build-
ing new applications using various in-home sensors.
We then present Bolt, a storage system for data gen-
erated by connected devices and applications in the
home. Bolt offers a stream based key-value abstrac-
tion with support for range queries over time and
filtering based on application-specific keys. Bolt
stores data on potentially untrusted cloud storage
providers while ensuring confidentiality using de-
centralized access control. Storage policies in Bolt
allow applications to prioritize their storage require-
ments of space, performance, cost, and reliability.
After highlighting the key difference between Bolt
and prior systems, we finally conclude the paper
with a description of our ongoing efforts to build
Bolt.

2 Storage Requirements

Optimize storage & retrieval for time series data:
Many devices in the home generate continuous
time series data (e.g., security video data) although
some devices generate data on demand (e.g., wire-
less scale) or infrequently (e.g., motion-sensors).
Hence, a storage system for these devices should
support common operations over time series data
such as temporal range queries. Another impor-
tant observation is that time series data generated
by applications and connected devices at home have
single writers simplifying concurrency control and
consistency protocols. Writers always generate new
data and do not perform random-access updates or
deletes. Traditional databases with their support
for transactions, concurrency control, and recov-
ery protocols are an overkill for such data as also
noted in [20], and file based storage offers inade-

1

withings.com

quate query interfaces. Systems that store time se-
ries data should support efficient querying of mas-
sive datasets while avoiding the overheads in sup-
porting generic storage workloads.

Support efficient sharing of data across devices:
Data generated by devices should be easily share-
able with applications no matter where the appli-
cations are running. For example, the PreHeat ap-
plication needs to access data generated by a ther-
mostat and occupancy sensors running in a single
home whereas the DNW application needs to ac-
cess data generated by devices managed by different
homes. Applications may want to access only part
of the data produced by a device. For example, in
the DNW example, it would be wasteful to access
the entire day worth of video data if the search for
suspicious activities needs to be done only over the
past few hours. This raises an important question:
what should the sharing granularity be? The shar-
ing granularity also affects the efficiency of reads
and writes; these frequent operations should incur a
low overhead in terms of CPU cycles, storage over-
head, and communication bandwidth and latency.

Ensure confidentiality of data: Data generated by
devices in the home may contain sensitive informa-
tion and therefore the home storage system must
guarantee the confidentiality of stored data and en-
force access control specified by the data owner.
Previous studies (e.g., [16]) show that unlike enter-
prise settings, access control for home data sharing
needs to support semantic grouping (based on the
content of data) and flexible policies as users’ ideal
policies are nuanced, complex, and have many ex-
ceptions. Hence, open research questions include
efficiently supporting changes in access controls
without requiring frequent re-encryption of a large
amount of data and providing granular access con-
trol capabilities with an easy-to-use policy author-
ing interface.

Support policy-driven storage: Data generated by
devices and applications have different storage re-
quirements for access performance, cost, and re-
liability. For example, a camera that records im-
ages upon detecting motion might store them locally
at home and delete them once the DNW applica-
tion has extracted images with people in them. The
DNW application might store these selected images

on a remote server to correlate individuals in images
captured by neighbouring cameras; once analyzed,
they can be stored on cheaper, slower archival stor-
age servers. Applications are in the best position to
prioritize storage metrics by specifying appropriate
policies.

As we review in detail in Section 4, existing stor-
age systems either expose inefficient sharing and
query abstractions for temporal device data [7, 9,
13], assume partial or complete trust on the stor-
age servers [14], or store data locally within the
home while ignoring application specific storage
policies [10]. Achieving the above four require-
ments simultaneously is challenging as they are at
odds with each other. For example, storing data lo-
cally facilitates privacy but it inhibits sharing, re-
mote access, and reliable storage. By the same to-
ken, storing data on external servers in the cloud
provides reliable storage and enables easy remote
access & sharing, but untrusted storage servers can
violate privacy. Finally, naı̈vely storing encrypted
data on untrusted servers inhibits efficient sharing
of data.

3 Initial Prototype of Bolt
Motivated by the requirements listed in Section 2,
we first discuss three guiding design decisions, fol-
lowed by the design of our initial Bolt prototype.

3.1 Design Decisions

Key-value streams as an abstraction for time-
series data: Bolt abstracts data into streams which
are uniquely identified by the <HomeID, AppID,
StreamID> tuple. A stream is made up of data
blocks and indices to support efficient lookups using
time and application-specific keys. The granularity
of sharing in Bolt is a stream.
Storage servers not trusted for confidentiality or
integrity: Bolt uses decentralized access control to
ensure the confidentiality of data; it encrypts the
data blocks of the stream and distributes keys to
readers with the help of a trusted key server. Bolt
uses key regression [8] and lazy revocation [12]
for efficient distribution of keys. Encryption pro-
vides confidentiality of data, however, a remote un-
trusted server storing part of a stream may modify
data blocks or even return old data. Bolt guaran-
tees the detection of data integrity violation and con-

2

Local Remote

Remote
Replicated Partitioned

Local

Azure

Amazon
S3

1
2
3

Hot data (latest)

Cold data (old)

Policy
Location

1
2

3

1
2
3

1
2
3

1
2
3

Figure 1: Policies specify the storage location for
stream data (here, data blocks 1, 2, and 3). Bolt
currently supports local, Azure, and S3 storage.

tent freshness. For efficient reads and writes, once
a stream is opened all data transfers occur only be-
tween the storage server and the application, min-
imizing dependency on the key server. Integrity
and freshness checks are performed initially when
a stream is opened for read or write; the integrity of
individual data blocks is checked on reads.

Configurable streams use storage across differ-
ent providers: The location of a stream is config-
urable (Figure 1). It may be stored either locally,
remotely on untrusted servers, replicated for relia-
bility, or striped across multiple storage providers
for cost effectiveness. This configurability allow
users and applications to prioritize their storage re-
quirements of space, performance, cost, and relia-
bility. Stream data is stored in a log enabling effi-
cient uploads on write. An index makes reads effi-
cient, fetching only the required data from local or
remote storage.

3.2 Bolt Prototype

API and guarantees. Bolt provides applications
two type of streams: (i) a ValueStream for small
data values (e.g. temperature readings); and (ii)
a FileStream for large values (e.g. images,
videos). ValueStreams append all stream data to a
single file and FileStreams store each entry in a sep-
arate file. Applications specify policies corre-
sponding to those shown in Figure 1. Each stream
can have one owner application (writer) and many
readers. Figure 2 shows the Bolt stream APIs. A
writer can store data values and tag them with a key
using append & update, and it can grant and
revoke read access to data. Readers can filter and

Function Description
append(key, val) append data for a key
update(key, val) update latest value for a key
getLatest() get latest KV pair inserted
get(key) get latest value for key
getAll(key) get all time-sorted values for key
getAll(key, ts, te) get all values for key

in time interval
getAll(kstart , kend) get all keys in key range
grant(appid) grant appid read access
revoke(appid) revoke appid’s read access
delete() delete stream data

Figure 2: Bolt’s stream APIs for storage, re-
trieval, and sharing.

query data using application-specific keys and time
(get*).

Bolt provides three security and privacy guaran-
tees: (i) Confidentiality: Data written to a stream
can only be read by an application to which the
owner grants access, and once the owner revokes
a reader’s access to a stream, the reader cannot ac-
cess data generated after revocation; (ii) Tamper ev-
idence: readers can detect if data has been tampered
with by anyone other than the owner; (iii) Fresh-
ness: readers can detect if the storage server returns
stale data. Bolt does not defend against denial-of-
service from the untrusted storage.

Read, write, and access control. Each principal
(<HomeID, AppID> tuple) in Bolt is associated
with a private-public key pair. A key server main-
tains the principal to public-key mappings. Each
stream is associated with metadata: a symmetric
content key to encrypt and decrypt data (Kcon), key
version, principals that have access to the data (one
of them is the owner), and the location where stream
data is stored. Kcon is stored encrypted — one entry
for each principal that has access to the stream data
using their public key. Stream data consists of two
parts: a log of encrypted data blocks, and an index
that maps a tag (key) to a time-sorted list of data
block identifiers.

Figure 3 shows the steps during reads and writes
in Bolt. An owner opens a stream (step 1) and

3

Untrusted
Storage

Step 4: Fetch datablocks, decrypt locally

App:
A1

Home: H1

Storage
Lib.

Step 1: Fetch content
key for Data Stream

H1/A1/S1

Index Data

Step 3 (local):
Verify integrity

& freshness Stream: H1/A1/S1

Key/Metadata
Server

Enc-H1/A1(Kcon),
Enc-H2/B1(Kcon),

version, url

metadata for H1/A1/S1

Step 2: Fetch
index

OR Encrypt datablock, update index & data

Figure 3: Steps during reads and writes for
application A1 in home H1 accessing stream
H1/A1/S1.

fetches stream metadata. 1 Next the owner fetches
the stream’s index from the untrusted storage server
(step 2). The index is made up of two parts: (i) index
data that maps a key to a list of data block identi-
fiers (<data-log-offset, write-timestamp, hash(data
block)> tuples), and (ii) index metadata which con-
tains the owner signed hash of index data. On ver-
ifying the integrity of the index data using index
metadata (step 3), the owner stores data blocks en-
crypted with the content key (<key, value, write-
timestamp, key-version> tuples); data blocks and
the modified index are stored back on the server
(step 4). Reads proceed similarly, with the integrity
of read data blocks being verified by using index
data.

To grant applications read access, the owner up-
dates stream metadata with the content key en-
crypted with the reader’s public key. Revoking
read access also involves updating stream metadata:
owners remove the appropriate principal from the
accessor’s list, remove the encrypted content keys,
roll forward the content key and key version for all
valid principals as per key-regression. Key regres-
sion allows readers with version V of the key to gen-
erate keys for versions 0 to V −1.

Bolt provides guarantees on data freshness sim-
ilar to SFSRO and Chefs [9]. Bolt clients check
content freshness using time stamps, ensuring any
data fetched from a storage server is no older than
a configurable writer-specified consistency period,
and also no older than any previously retrieved data.

1In our initial design, we assume that stream metadata is
stored on a trusted key server to prevent unauthorized updates.

4 Related Work
A number of recent works focus on building sys-
tems for sharing and managing personal data. We
first highlight key differences between Bolt and sev-
eral closely related systems. We then discuss prior
studies on securing data stored in untrusted remote
storage and how they compare to Bolt.

Personal and home data management: Perspec-
tive [18] is a semantic file system designed to help
householders easily manage data spread across de-
vices (e.g., portable music player, DVR, laptop) in
the home. Perspective exposes a view abstraction
where a view is an attribute-based description of a
set of files with support for queries on file attributes.
It allows devices to participate in the system in a
peer-to-peer fashion. Security and access control
are not a focus of the work. HomeViews [10] is
designed to ease the management and sharing of
files among people. It exposes database-style views
over one’s files and supports access-controlled shar-
ing of views with remote users in a peer-to-peer
based architecture. Both systems are more suited
for storing, managing, and sharing user generated
data (e.g., photos, digital music, documents) rather
than device-generated time series data.

Secure systems using untrusted storage:
SUNDR [13] is a network file system that pro-
vides integrity and consistency guarantees of files
stored in untrusted remote storage. SPORC [7]
is a framework for building group collaboration
services like shared documents using untrusted
servers. Venus [21] and Depot [15] expose a
key-value store to clients on top of untrusted cloud
storage providers. Chefs [9] enables replicating
an entire file system on untrusted storage servers
in order to support a large number of readers.
All of these systems expose a storage interface
on top of untrusted storage, however, none is
suited for supporting semi-structured time series
data from connected devices. These systems also
do not provide configurability on where to store
data: local versus remote for privacy concerns,
partitioned across multiple storage providers for
cost-effectiveness, and replicated across multiple
providers for reliability and avoiding vendor lock-in
(as in RACS [2] and HAIL [3]). A related strand
of work focuses on accountability and auditing

4

Sharing granularity Access control models Datastore trust assumptions
Perspective [18] Views (file attributes) N/A Trusted devices owned by the user
HomeViews [10] Database-style views Capability-based access

control per view
Trusted local database that commu-
nicates with others in a P2P fashion

SUNDR [13] Individual files File owned by a user or
group; no support for
read access control

Untrusted remote storage (mainly
focused on data integrity)

SiRiUS [11] Individual files Read & write access
control per file

Untrusted remote storage (focused
both on data integrity and secrecy)

Chefs [9] Entire file system Read-only access control
for entire file system

Replicated untrusted remote stor-
age (focused both on data integrity
and secrecy)

Bolt Individual streams
with <time, key,
value> tuples

Read-only access control
per stream

Trusted local and untrusted, repli-
cated, or partitioned remote storage
(focused on integrity and secrecy)

Figure 4: Comparing Bolt with prior systems in terms of (1) data sharing granularity, (2) access
control models, and (3) trust assumptions that each system makes on data storage.

(see Cloudproof [17]) of cloud behavior but again
they are not suitable for the home setting and
require server-side changes. Ming et al. [14]
store patient health records (PHR) on the cloud
and enable attribute-based access control policies
to enable secure and efficient sharing of PHR’s.
However, their system again requires cooperation
from storage servers. Goh et al. [11] propose a se-
curity overlay called SiRiUS that extends local file
systems with untrusted cloud storage systems with
the support of data integrity and confidentiality.
SiRiUS supports multiple writers and readers per
file but does not provide freshness guarantee of data
content. Figure 4 compares Bolt with some of the
aforementioned systems.

5 Future Directions
Our Bolt prototype currently supports local, Azure,
and S3 storage, and we have integrated Bolt with
HomeOS. We are currently working on several ex-
tensions. Our current design trusts the key/metadata
server to prevent unauthorized updates to metadata.
Moving forward, we are looking at ways to mini-
mize this trust. One approach is to replicate meta-
data at 2 f +1 servers and go by majority, to tolerate
up to f malicious servers. We are also looking at
ways to make the sharing granularity more flexible.
Currently, a reader gets access to all the data writ-

ten to a stream. We are looking at efficient ways to
share data generated only within a particular time
interval or only filtered by a particular key. Ap-
proaches to support these schemes will potentially
need more metadata storage space; a tradeoff we are
exploring next.

References
[1] Mi Casa Verde. http://www.

micasaverde.com/. Retrieved: Sept
2013.

[2] H. Abu-Libdeh, L. Princehouse, and
H. Weatherspoon. Racs: a case for cloud
storage diversity. In SoCC, 2010.

[3] K. D. Bowers, A. Juels, and A. Oprea. Hail: a
high-availability and integrity layer for cloud
storage. In Proceedings of the ACM Confer-
ence on Computer and Communications Secu-
rity (CCS), Nov. 2009.

[4] A. B. Brush, J. Jung, R. Mahajan, and F. Mar-
tinez. Digital Neighborhood Watch: Investi-
gating the Sharing of Camera Data amongst
Neighbors. In CSCW, 2013.

[5] K. E. Caine, C. Y. Zimmerman, Z. Schall-
Zimmerman, W. R. Hazlewood, L. J. Camp,
K. H. Connelly, L. L. Huber, and K. Shankar.
DigiSwitch: A device to allow older adults to
monitor and direct the collection and transmis-

5

http://www.micasaverde.com/
http://www.micasaverde.com/

sion of health information collected at home.
J. Medical Systems, 35(5):1181–1195, 2011.

[6] C. Dixon, R. Mahajan, S. Agarwal, A. J.
Brush, B. Lee, S. Saroiu, and P. Bahl. An
operating system for the home. In Proc. 9th
USENIX NSDI, Apr. 2012.

[7] A. J. Feldman, W. P. Zeller, M. J. Freedman,
and E. W. Felten. SPORC: group collaboration
using untrusted cloud resources. In Proc. 9th
USENIX OSDI, Oct. 2010.

[8] K. Fu. Key regression: Enabling efficient key
distribution for secure distributed storage. In
NDSS, 2006.

[9] K. Fu. Integrity and access control in un-
trusted content distribution networks. PhD
thesis, MIT, 2005.

[10] R. Geambasu, M. Balazinska, S. D. Gribble,
and H. M. Levy. Homeviews: peer-to-peer
middleware for personal data sharing applica-
tions. In SIGMOD, 2007.

[11] E.-J. Goh, H. Shacham, N. Modadugu, and
D. Boneh. SiRiUS: Securing Remote Un-
trusted Storage. In NDSS, 2003.

[12] M. Kallahalla, E. Riedel, R. Swaminathan,
Q. Wang, and K. Fu. Plutus: Scalable se-
cure file sharing on untrusted storage. In Proc.
2nd USENIX Conference on File and Storage
Technologies, Mar. 2003.

[13] J. Li, M. Krohn, D. Mazières, and D. Shasha.
Secure untrusted data repository (SUNDR). In
Proc. 6th USENIX OSDI, Dec. 2004.

[14] M. Li, S. Yu, K. Ren, and W. Lou. Secur-
ing personal health records in cloud comput-
ing: Patient-centric and fine-grained data ac-
cess control in multi-owner settings. In Se-
cureComm, LNICST. Springer Berlin Heidel-
berg, 2010.

[15] P. Mahajan, S. Setty, S. Lee, A. Clement,
L. Alvisi, M. Dahlin, and M. Walfish. Depot:
Cloud storage with minimal trust. TOCS, 29
(4), Dec. 2011.

[16] M. L. Mazurek, J. P. Arsenault, J. Bresee,
N. Gupta, I. Ion, C. Johns, D. Lee, Y. Liang,
J. Olsen, B. Salmon, R. Shay, K. Vaniea,
L. Bauer, L. F. Cranor, G. R. Ganger, and
M. K. Reiter. Access control for home data

sharing: Attitudes, needs and practices. In
Proceedings of the SIGCHI conference on Hu-
man factors in computing systems (CHI ’10),
2010.

[17] R. A. Popa, J. R. Lorch, D. Molnar, H. J.
Wang, and L. Zhuang. Enabling security
in cloud storage SLAs with CloudProof. In
USENIX ATC, 2011.

[18] B. Salmon, S. W. Schlosser, L. F. Cranor, and
G. R. Ganger. Perspective: semantic data
management for the home. In Proc. USENIX
Conference on File and Storage Technologies
(FAST), Feb. 2008.

[19] J. Scott, A. J. B. Brush, J. Krumm, B. Mey-
ers, M. Hazas, S. Hodges, and N. Villar. Pre-
Heat: controlling home heating using occu-
pancy prediction. In Ubicomp, 2011.

[20] I. Shafer, R. R. Sambasivan, A. Rowe, and
G. R. Ganger. Specialized storage for big time
series. In The 5th USENIX Workshop on Hot
Topics in Storage and File Systems, HotStor-
age, 2013.

[21] A. Shraer, C. Cachin, A. Cidon, I. Keidar,
Y. Michalevsky, and D. Shaket. Venus: verifi-
cation for untrusted cloud storage. In CCSW,
2010.

6

	Introduction
	Storage Requirements
	Initial Prototype of Bolt
	Design Decisions
	Bolt Prototype

	Related Work
	Future Directions

