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ABSTRACT

Privacy-preserving federated graph analytics is an emerging area
of research. The goal is to run graph analytics queries over a set of
devices that are organized as a graph while keeping the raw data
on the devices rather than centralizing it. Further, no entity may
learn any new information except for the final query result. For
instance, a device may not learn a neighbor’s data. The state-of-
the-art prior work for this problem provides privacy guarantees for
a broad set of queries in a strong threat model where the devices
can be malicious. However, it imposes an impractical overhead.
For example, for a certain query, each device locally requires over
8.79 hours of cpu time and 5.73 GiBs of network transfers. This
paper presents Colo, a new, low-cost system for privacy-preserving
federated graph analytics that requires minutes of cpu time and a
few MiBs in network transfers, for a particular subset of queries.
At the heart of Colo is a new secure computation protocol that
enables a device to securely and efficiently evaluate a graph query
in its local neighborhood while hiding device data, edge data, and
topology data. An implementation and evaluation of Colo shows
that for running a variety of COVID-19 queries over a population
of 1M devices, it requires less than 8.4 minutes of a device’s cpu
time and 4.93 MiBs in network transfers—improvements of up to
three orders of magnitude.
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1 INTRODUCTION

As a motivating example, consider the following scenario between a
mobile app maker of a contact tracing application for an infectious
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disease like COVID-19 [33], and an influential data analyst such
as the Centers for Disease Control and Prevention (CDC) [5]. The
app maker installs the app on a large number of mobile devices,
where it collects information onwhether a device owner is currently
infected, and when, where, and for how long the device comes in
contact with other devices. Abstractly, one can view the devices
as a graph where they are the nodes and their interactions are
the edges. Meanwhile, the analyst wants to use the data to study
disease patterns. For instance, it wants to understand the prevalence
of superspreaders by evaluating the average number of infected
devices in an infected device’s neighborhood [16, 28]. Can we enable
the analyst to run such queries and learn their result? Further, can
we do it in a way that doesn’t require moving device and edge data
outside the devices to a centralized location? And further still, can we
ensure that only the query result is revealed and no new individual
device information is learned by any other party?

This is the problem of privacy-preserving federated graph ana-
lytics. The federated aspect of this problem emphasizes keeping
raw data at the devices, in contrast to centralizing the data, which
is highly susceptible to data breaches, especially in bulk [30, 34].
Meanwhile, the privacy guarantee of the problem emphasizes that
an entity should get only the information that it absolutely needs.
Thus, an analyst may learn the query result that is an aggregate
across devices. And any device may not learn any more information
than it knows locally through its own data and edges.

As we discuss in related work (§7), privacy-preserving federated
graph analytics is an emerging area of research and displays a
trade-off between generality, privacy, and efficiency. For instance,
Gunther et al. [13] built a system RIPPLE to answer epidemiological
questions. However, their system answers aggregation queries only
where a device can securely sum its state (e.g., an integer) with its
neighbors’ state, but not other secure operations. Thus, it cannot
answer our example query on superspreaders, which also requires
computing multiplications. In contrast, Roth et al. [31] have built a
general-purpose system, Mycelium, that assumes a strong threat
model where both the devices and a centralized aggregator can be
malicious. However, Mycelium is expensive. For the superspreader
query over 1M devices, each device incurs 8.79 hours of local cpu
time and 5.73 GiB of network transfers.

This paper introduces Colo, an efficient system for privacy-
preserving federated graph analytics. Colo allows an analyst to
run simple queries (like the superspreader query) that have pred-
icates with a limited set of inputs and outputs, and that evaluate
these predicates between a device and its neighbors. Colo guaran-
tees privacy (only the analyst learns the query result and no entity
gets any other intermediate data) while assuming malicious devices
and a set of M aggregation servers of which a fraction f can be
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malicious. Finally, Colo is scalable and efficient: it supports a large
number of devices in the order of a few million, while requiring
them to contribute a small amount of cpu and network.

At a high level, Colo follows a workflow of local evaluation
followed by a global aggregation across devices (§3). In the local
evaluation, each device evaluates the query between itself and its
neighbors. The global aggregation then aggregates these per-device
outputs. In this workflow, Colo must address two challenges. First,
it must hide node, edge, and topology data during the local evalua-
tion without imposing a large overhead on the devices. Second, it
must aggregate per-node outputs across the population of devices
without revealing the intermediate results.

The first challenge of hiding node, edge, and topology data is
tricky, especially with malicious devices. For instance, say two
neighboring devices vA and vB want to compute the product vA.inf ·
vB.inf (as needed for the superspreader query), where inf indicates
their infection status. Then, a malicious device, say vB, may set
its infection status to vB.inf = 108. As a result, the query result
secretly encodes vA’s infection status (result is large if vA.inf = 1).
One may use a general-purpose tool from cryptography to address
this issue, but that would be expensive. Furthermore, even if there
were an efficient protocol for this computation, say that requires a
single interaction between vA and vB, then this protocol must also
hide that vA and vB are communicating, to protect their topology
data, i.e., the fact they are neighbors.

Colo addresses this first challenge through a new, tailored se-
cure computation protocol (§4.3.1). Colo observes that the query
predicates that it targets operate over a limited set of inputs and
produce a limited set of outputs. For instance, the legitimate inputs
and outputs for vA.inf · vB.inf are all either zero or one. Thus, in-
stead of using a general purpose secure computation protocol such
as Yao’s Garbled Circuits [36] that operates over arbitrary inputs
and outputs, Colo uses a protocol that operates over a limited set
of inputs and outputs. Specifically, one party, say vB, computes
all possible legitimate query outputs in plaintext, and then allows
the other party vA to pick one of these outputs privately using
oblivious transfers (OT) [6, 29]. Colo fortifies this protocol against
malicious behavior of vB by incorporating random masks, efficient
commitments [3, 10], and range proofs [9, 11] (§4.3.1).

The protocol described above doesn’t yet address the require-
ment of hiding the topology of devices. To hide this data efficiently,
that is, the knowledge of who is a neighbor with whom, Colo pro-
hibits devices from directly interacting with each other. Rather,
Colo arranges for them to communicate via a set of servers, specif-
ically, a set of 40 to 100 servers, where up to f % (set to 20% in
our experiments) are malicious (§3). This arrangement enables the
servers to run a particular metadata hiding communication system,
Karaoke [17], that is provably secure and low cost for the devices
(although with significant overhead for the servers) (§4.3.2).

Colo addresses the second challenge of global aggregation across
devices through straightforward secret sharing techniques while
piggybacking on the set of servers (§3, §4.4). Specifically, devices
add zero sum masks to their local outputs, and send shares of these
local results to the servers. As long as one of the servers is honest,
the analyst learns only the query output.

We implemented (§5) and evaluated (§6) a prototype of Colo.
Our evaluation shows that for 1M devices connected to at most 50

neighbors each, and for a set of example queries (Figure 1) which
includes the superspreader query, a device in Colo incurs less than
8.4 minutes of (single core) cpu time and 4.93 MiB of network trans-
fers. In contrast, the Mycelium system of Roth et al. [31] requires a
device-side cost of 8.79 hours (single core) cpu time and 5.73 GiB
network transfers. In addition, Colo’s server-side cost, depending
on the query, ranges from $158 to $1,504 total for Colo’s 40 servers
(the lower number is for the superspreader query). In contrast,
Mycelium’s server-side cost is over $57, 490 per query.

Colo’s limitations are substantial. In particular, it does not handle
general purpose queries, rather only those that evaluate predicates
over a bounded set of inputs and outputs. However, Colo scales to
a significant number of devices and is efficient for them, in a strong
threat model. But more importantly, unlike prior work, Colo shows
that privacy-preserving federated graph analytics can be practical,
and that the CDC could run certain queries over the devices’ data
while guaranteeing privacy in a strong sense, without draining
the devices’ resources, and without aggressively depleting its own
budget (e.g., running the superspreader query in a large city every
two weeks would cost around four thousand dollars annually).

2 PROBLEM STATEMENT

2.1 Scenario

We consider a scenario consisting of a data analyst A and a large
number of mobile devices vi for i ∈ [0,N ). For instance, N = 106.

The devices form a graph. As an example, they may run a contact
tracing application for COVID-19 [33] that collects information on
the infection status of the device owners and identities of the devices
they come in contact with, that is, their neighbors. More precisely,
a device may have (i) node data, for example, a status variable inf
indicating whether the device’s owner is currently infected, tInf
indicating the time the owner got infected (or null if the owner
is not infected), and demographic information such as age and
ethnicity; (ii) edge data, for example, the number of times the device
came in contact with a neighbor (contacts), the cumulative duration
(duration) of these interactions, and (location, time, duration) of
each interaction; and, (iii) topology data, for example, the list of the
device’s neighbors.

The analyst A, say a large hospital or CDC in the context of
the contact tracing application, wants to analyze the device data
by running graph queries. Figure 1 shows a few example queries
from the literature [2, 16, 24, 25, 28] (these queries are a subset of
the ones considered in the Mycelium system of Roth et al. [31]).
For instance, A may want to learn the number of active infections
infected devices have in their neighborhood (Q1). These queries
perform a local computation at every device and its neighborhood,
and then aggregate the per-device results.

2.2 Threat model

We assume that the devices are malicious, i.e., an adversary can
compromise a subset of devices. A compromised device may try to
learn information about an honest device beyond what it knows
from its own data. For instance, if a compromised device is a neigh-
bor of an honest device, then the compromised device already has
edge data for their edge (e.g., the location and time of their last
meeting); however, the adversary may further want to learn if the
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Query Description

Q1 The total number of infections in an infected participant’s neighborhood
SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf

Q2 The amount of time neighbor has spent near infected device if neighbor is infected within 5-15 days of contact with the device
SELECT SUM(edge.duration) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf ∈ [edge.lastContact+5 days, edge.lastContact+15 days])

Q3 The frequency of contact between device and neighbor, if device infected neighbor
SELECT SUM(edge.contacts)/COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf > self.tInf+2 days)

Q4 Secondary attack rate of infected devices if they traveled on the subway
SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf & onSubway(edge.lastContact.location)

Q5 The number of secondary infections caused by infected devices in different age groups
SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf > self.tInf+2 days) GROUP BY self.age

Q6 The number of secondary infections based on type of exposure (such as family, social, work)
SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf > self.tInf+2 days) GROUP BY edge.setting

Q7 Secondary attack rates in household vs non-household contacts
SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf GROUP BY isHousehold(edge.lastContact.location)

Q8 Secondary attack rates within case-contact pairs in the same age group
SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.age∈[0,100] & self.age∈[neighbor.age-10,neighbor.age+10]

Figure 1: Example graph queries from Mycelium [31] and the literature on health analytics [2, 8, 12, 15, 16, 24, 25, 28]. We assume that the

domain of the inputs to these queries is bounded, for example, inf ∈ [0, 1] and tinf ∈ [1, 120], referring to the days in the latest few months.

honest device is infected (neighbor’s node data), whether it recently
met someone on the subway (neighbor’s edge data), and whom it
recently came in contact with (neighbor’s topology data).

The analyst may also be malicious and want to learn about
individual device node, edge, or topology data—information that is
more granular than the result of the queries.

Finally, we assume that the adversary may also observe and
manipulate network traffic, for instance, in the backbone network,
and try to infer relationships between devices.

2.3 Goals and non-goals

Target queries. Ideally, we would support arbitrary graph queries.
However, as noted earlier (§1), generality of queries is in tension
with privacy and efficiency. Thus, in this paper we focus on simpler
queries such as those in Figure 1 where the aggregations across
devices are SUM, COUNT and AVG operations, and where devices
compute simple predicates on a small set of possible inputs in their
one hop neighborhood (for example, the infection status inf is either
zero or one, and the time of infection tinf is in [1, 120] referring
to the days in the latest few months). Although these queries are
a sub-class of a broad set of queries, they are important according
to the health literature and form a precursor to more sophisticated
queries in an analyst’s workflow.
Privacy (P1). Private data should always be hidden from the ad-
versary. From the point of view of a device, it may not learn any
information beyond its own node, edge, and topology data. In par-
ticular, it may not learn any information about a neighbor beyond
what is contained in the direct edge to the neighbor. Similarly, the
analyst must only learn the query result.
Privacy (P2). Individual devices will cause bounded changes to
query result in the presence of malicious neighbors and servers.
This is not a formal privacy guarantee but can be easily extended
to differential privacy by adding noise to the query result. In this
work, we consider bounded contribution as our privacy goal. For
example, in certain counting queries, each device should contribute
at most 1 to the final result.

Scale and efficiency. First, our systemmust support a large number
of devices, for example, one million. We assume that these devices
have a bounded degree, for example, up to 50 neighbors. (If the
actual device graph has nodes with a larger degree, then they may
select a subset uniformly for the query execution.) Second, we want
device overhead to be low, for example, minutes of cpu time and
at most a few MiBs in network transfers, which is affordable for
mobile devices. Meanwhile, if the system employs any servers, e.g.,
cloud servers, then we want the server-side cost to be affordable. In
terms of dollar cost of renting the servers, we want the per-server
cost to be no more than a few tens of dollars per query over a
million devices.
Correctness (non-goal). In this paper, we focus on privacy and
require the query output to be correct only during periods when
all parties (devices and any servers) are semi-honest. Ensuring
correctness in the periods of malicious behavior is likely to be very
expensive, and we leave it as future work. Nevertheless, the system
must ensure privacy at all times.

3 OVERVIEW OF COLO

Colo takes a federated approach where each device keeps its raw
data local and first communicates with its neighbors to perform
local computation (e.g., aggregation at the neighborhood level),
before uploading this local result to a server for aggregation. The
federated approach has distinct advantages relative to the central-
ized approach: (i) it allows devices to feel more trust in the system
as they keep possession of their data, (ii) it doesn’t risk bulk data
breaches as devices do not collectively centralize their data, and (iii)
it handles data updates naturally as each device computes locally
and can use its latest data.

Colo relies on a set of servers, for example, 40-100 servers, Si for
i ∈ [0,M) (Figure 2). Colo assumes that at most f % of these servers
may be compromised by the adversary; our implementation sets
f = 20%. That is, an adversary may compromise, e.g., up to 8 servers
when the number of servers is 40.M and f are both configurable. In
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Figure 2: An overview of Colo’s query distribution, local aggregation, and global aggregation phases of query execution. The dotted line in local

aggregation depicts metadata-hiding communication, and the dashed line depicts secure computation.

Colo, devices do not directly interact with each other; rather, they
communicate via the servers.

Colo has a one-time setup phase, and three phases of query
distribution, local aggregation, and global aggregation for query
execution (Figure 2).

In the setup phase (not shown in the figure), the servers gen-
erate and distribute keys for a cryptographic protocol used in the
local aggregation phase. Specifically, they generate the proving and
verification keys for a zero-knowledge proof (ZKP) scheme [37].

In the query distribution phase (the leftmost diagram in Figure 2),
the analyst A specifies the query, say q, and sends it to each of the
servers. SinceA can be malicious (§2.2) and may write a query that
tries to infer a single device’s data, the servers validate A’s query.
For example, if q contains a WHERE clause of the form WHERE
self.ID = xxx, then the servers reject it. Colo assumes that the servers
have a list of certified queries that are allowed. Once each server
validates the query, it signs and broadcasts it to the devices. A
device starts the next phase after validating enough signatures, that
is, more than a threshold of servers that can be compromised.

In the local aggregation phase (the center diagram in Figure 2),
each device evaluates the query in its neighborhood. For instance,
for the query Q1 (Figure 1), each node computes the local count of
infected neighbors in its neighborhood. Thus, a device uses a secure
computation protocol with its neighbor such that at the end of the
protocol the two parties receive secret shares of the result of the
computation. This protocol admits malicious devices; for instance, a
malicious neighbor is prevented from supplying an arbitrary input
such as setting its inf = 106.

Secure computation hides node and edge data; however, an adver-
sary that observes network traffic can infer topology by monitoring
who is performing secure computation with whom. Thus, the de-
vices in the local aggregation phase execute secure computation
over a metadata-hiding communication network, particularly, the
Karaoke system [17]. The servers facilitate and run this system.

Finally, in the global aggregation phase (the right diagram in
Figure 2), the devices send their results from the local aggregation
to the servers, who aggregate them. Specifically, each device secret
shares its result with the servers, who locally add the shares they
receive from the devices. The servers send the result of their local
computation to the analyst who combines these outputs across the
servers to obtain the query result.

4 DESIGN DETAILS

This section describes the details of Colo. Figure 3 provides a high-
level overview and how the phases connect with each other.

4.1 Setup (key generation)

As we will describe later (§4.3.1), devices in Colo’s local aggregation
phase need to generate an array T of values and prove that each
value is within a range [L,U ]. The challenge is that the efficient
and popular zero-knowledge proof (ZKP) schemes such as that of
Groth [11] bind the proving and verification keys to the statement
(the circuit) the prover is proving. That is, this circuit is a function of
the length len(T ) of array T in our case. Unfortunately, the len(T )
further depends on the analyst’s query q, and may be different for
different queries.

To reuse the keys for different queries, Colo generates a key
set {key20 , key21 , . . . , key2log(len(T ) )−1 } containing log(len(T )) keys
for all powers of two between 1 and anticipated maximum length
len(T ), for example, 1024. In this way, the size of the key set is
manageable, e.g., 102 MiB, and during query execution devices
generate no more than log(len(T )) proofs.

4.2 Query distribution

As mentioned in the overview (§3), the analyst A specifies a query
q and gives it to the servers, who validate it. Here, we elaborate on
how A specifies the query.

Each query has two components: (i) a SQL query similar to the
examples we have discussed (Figure 1), and (ii) a transformation
function, PreProcess, that transforms the raw data at a device into a
form needed by the SQL query.

As noted earlier (§2.3), Colo does not support arbitrary SQL
queries. Rather, it targets simple queries of the form SELECT AGG-
OP(g(self.data, neighbor.data)) FROM neigh(1) WHERE h(self.data,
neighbor.data), where AGG-OP is the SUM, COUNT, or AVG ag-
gregation operation, g is a predicate on the data of two neighbors
(including their node and edge data), and h is a filter that runs over
the same data to compute whether a particular edge will participate
in aggregation or not. If A wants to run a query with a GROUP
BY operation, A transforms it into several sub-queries and sub-
mits them to the servers separately. For example, A converts Q5 in
Figure 1 into a series of queries such as SELECT COUNT(*) FROM
neigh(1) WHERE 20 < self.age < 30 for the different age groups.
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Setup (one time)
• The servers Si , i ∈ [0,M), generate a set of keys for a zero-knowledge proof (ZKP) scheme using a MPC protocol [37].
• The servers distribute the keys to the devices. A device downloads the set of keys from one server and hashes of these keys from the others
to defend against attacks from malicious servers (a malicious server can distribute malicious keys). The devices stores the keys locally.

Query distribution
(1) The analyst A submits a query q to all the servers.

(2) The servers verify the query and sign it. Each server broadcasts its signed query to all devices to start query execution.
Local aggregation

(3) The servers run the Karaoke system [17] to enable the devices to communicate anonymously with each other.

(4) Each device initializes its local result of query execution to 0 and runs the local aggregation secure computation protocol (§4.3.1; Figure 4)
with its neighbors over the Karaoke system [17] to obtain a share of its local result.

Global aggregation
(5) Each device secret shares its own share of its local result with the servers.

(6) Each server sums all secret shares it receives. Each server sends its sum to the analyst and the analyst adds the sum across the servers to
reconstruct the global result.

Figure 3: A high-level description of Colo’s phases.

The PreProcess function specifies how a device should translate
its raw data into the attributes accessed by the SQL query. Along
with encoding, constraints (bounds) are necessary as otherwise ma-
licious devices can supply arbitrary inputs. For example, to execute
Q3 in Figure 1, the analyst needs to specify i) device infection status
inf as a binary number; ii) the infection timestamp tInf as an inte-
ger from 1 to 30 to represent March 1 to 30; iii) edge.contacts, which
is the number of interactions two neighbors have had, as a bounded
integer, for example, 80 as in the epidemiology literature [16].

Once the servers receiveA’s query, they verify it by matching it
to a list of certified queries. The servers then sign and broadcast the
query; if a device verifies signatures from more than the fraction of
servers that can be compromised, it starts query execution.

4.3 Local aggregation

4.3.1 Hiding node and edge data. Recall from the overview (§3)
that the goal of local aggregation is to enable a device to com-
pute the query locally just on its neighborhood. This computa-
tion further breaks into evaluating the query for every neigh-
bor edge of a node. That is, a node needs to evaluate a function
F = g ◦ h(self .data, neighbor .data) with each of its neighbors
and compute

∑
neighbor F (self .data, neighbor .data). As an example,

for query Q1 the function F equals F (self .data, neighbor .data) =
self .inf · neighbor .inf .

For the moment, assume that we do not need to hide the topol-
ogy data at the devices (we will relax this assumption in the next
subsection). Then, a natural option for computing F is to use a
two-party secure computation protocol such as Yao’s garbled cir-
cuit (Yao’s GC) [35]. The neighbor, say, vB, could act as the garbler,
generate a garbled circuit, send it to the other node, say, vA, who
would act as the evaluator to obtain the result. Since the two nodes
must not obtain the result of F in plaintext, the two nodes may
compute y = F (rvA , rvB , vA.inf , vB.inf ) = (vA.inf ·vB.inf )+rvA +rvB ,
where rvA , rvB ∈ F are uniformly sampled masks supplied by the
two parties to hide the output from each other. (The field F could

be 264, for example.) At the end of the protocol, vB may store −rvB
as its output, while vA may store −rvA + y as its output.

The challenge is in preventing malicious behavior efficiently.
To protect against a malicious neighbor (garbler vB), Colo would
have to use a version of Yao’s GC that employs techniques such
as cut-and-choose [18, 19, 23] that prevent a garbler from creating
arbitrary circuits, for example, an F ′ that computes, (vA.inf · 106) +
rvA + rvB . These general-purpose primitives are expensive because
they are not tailored for the queries and they offer more than we
need: malicious integrity is not our goal (§2.3).

Colo observes that the predicates F that appear in Colo’s target
queries have bounded inputs and outputs. For example, Q1 has
two possible inputs of 0 and 1 for vA.inf and thus two possible
outputs of 0 and 1. As another example, if we take Q3 in Figure 1
and assume tInf has 30 possibilities (for 30 days), then the number
of possible inputs for vA is sixty. That is, vA’s input pair (inf , tInf )
can range from the case (0, 0) to the case (1, 29). Corresponding to
each of these inputs, the output edge.contacts may be a value in the
range [0, 79].

Leveraging this observation, the neighbor in Colo (vB above)
precomputes outputs for all possible inputs of vA into an array T
instead of generating them at runtime inside Yao’s GC. One can
view this arrangement as making vB commit to the outputs without
looking at v′As input. For instance, for Q3, vB would generate a T
of length 60 where each entry is in the range [0, 79]. Then, vB can
arrange for vA to get one of these values obliviously.
Protocol details. Figure 4 shows the details of Colo’s protocol. For
a moment, assume that the nodes vA and vB are honest-but-curious.
Then, for every possible input of vA, the neighbor vB generates
one entry of array T . It also adds a mask, r ∈ F, to each entry
of T . That is, after generating the array T , vB offsets each entry
by the same mask and computes T ′ [i] = T [i] + r , i ∈ [0, len(T )),
where r is private to vB. The node vA then obtains one of the
entries of the table corresponding to its input using 1-out-of-len(T )
oblivious transfer [6, 29]. Finally, vA uploads T [j] + r for the global
aggregation, and vB uploads −r to cancel the mask.
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Local aggregation protocol of Colo

(1) Each device receives a query q containing a function PreProcess, a local computation F , and a bound Bound. PreProcess contains information
on how to convert a device’s raw data into inputs for F . It also specifies the set of valid values for each input parameter to F . The bound
Bound is the range of valid outputs of F .

(2) Each device participates in this local aggregation protocol. Denote A as the device and B as a neighbor.

(3) Each neighbor B of A does the following locally:

(a) (Generate mask) Samples an element r in a field F uniformly randomly.
(b) (Enumerate all inputs of A) Generates an array s containing all possible inputs of A based on PreProcess.
(c) (Compute outputs) For every s[i], computes T [i] = F (s[i],Bin), where Bin is B’s input.
(d) (Mask outputs and commit to them) For every T [i], computes T ′ [i] = T [i] + r . It then samples R[i] and generates commitment

CM [i] = Commit (T ′ [i], R[i]).
(e) (Prove bound of outputs) Generates a ZKP that it knows the opening of all commitments and a mask such that each committed

value is the addition of the mask and some value bounded by Bound.

(4) Each neighbor B sends commitments CM and the ZKP to A which verifies the ZKP.

(5) (Function evaluation) A runs OT with each neighbor B to retrieve (T ′ [j],R[j]), where s[j] is A’s input to F . The device A verifies the
opening to the commitment, that is, it verifies Commit (T ′ [j], R[j]) equals CM [j] received in the previous step.

(6) If the verifications above pass, A adds T ′ [j] to its local aggregation result. Its neighbor device B adds −r to its local aggregation result.

Figure 4: Colo’s local aggregation.

To account for a malicious neighbor vB who tries to break our
privacy goal P2 (§2.3), Colo’s protocol adds a zero-knowledge range
proof [11]. Specifically, vB commits to the values in T and proves
that each value is bounded and that each value is offset by the same
private mask r . Recall from the setup step (§4.1) that the keys for
the ZKP are specific to length len(T ) of array T . Thus, vB splits up
proof generation as needed depending on the binary representation
of len(T ). After generating the proofs, vB sends them to vA along
with one entry T ′ [j] of T ′ (using OT) as well as the opening for the
commitment to T ′ [j]. Now, instead of using an OT protocol secure
only against an honest-but-curious sender, Colo’s protocol switches
to an OT that defends against a malicious sender (vB) [6, 26].

Colo’s protocol is not general purpose and is not meant to replace
Yao’s GC. In particular, its overhead is proportional to the input
domain size of the predicate F . Thus, it only works for small input
domains. However, its performance benefits are very significant,
and allow the devices to keep their overhead low. First, node vB
evaluates the predicate F in plaintext rather than inside Yao’s GC.
Second, the protocol uses ZKP for range proofs, a computation
which has received significant attention in the literature [4, 7].
Third, and similar to the point above, the OT primitive is also a basic
secure computation primitive that has received much attention on
performance optimizations [6, 21, 26, 32].

4.3.2 Hiding topology. The local aggregation protocol so far hides
node and edge data; however, an adversary that can monitor net-
work traffic can infer who is running secure computation with
whom and thus figure out the topology data for the devices. As
noted earlier (§3), Colo protects this information by enabling the
devices to communicate over a metadata-hiding communication
system. In particular, Colo uses a state-of-the-art system called
Karaoke [17].

Though Karaoke adds both significant cpu and network over-
head to the servers (§6), we pick Karaoke for several reasons. First,

the overhead is at the server-side, where there is more tolerance for
overhead relative to the devices. Second, Karaoke can scale to mil-
lions of devices as needed for our scenario. Third, it defends against
malicious servers who may duplicate or drop traffic to learn com-
munication patterns. And, fourth, it provides a rigorous guarantee
of (𝜖 ,𝛿) differential privacy.

4.4 Global aggregation

The global aggregation phase is the last phase in query execution.
Recall that at the end of the local aggregation phase, each device
has a local result, say yi . For instance, yi equals the output of secure
computation T ′ [j] in Figure 4 or the mask r added by a device that
constructed the array T ′. The goal of the global aggregation phase is
to aggregate these outputs across devices to wrap up the execution
of the query. For this aggregation, each device secret shares (using
additive shares in the field F) its output yi and sends one share
to each server. Each server then locally computes

∑
i [yi], where

[yi] is a share it receives. The analyst finally aggregates the results
across the servers, that is, computes

∑
edge (T [j] + r) +∑

edge (−r),
canceling out the random masks, and obtaining the query output.

This simple global aggregation protocol ensures that the local ag-
gregation results of an honest device get aggregated with the results
of other honest devices exactly once. For instance, if a malicious
server drops or duplicates a share [yi] supplied by an honest device,
then the analyst A learns a uniformly random output, because the
shares of [yi] at an honest server will not cancel out. This protocol
guarantees privacy as long as one of the servers is honest, which is
satisfied by our assumption of only up to f = 20% of servers being
malicious (and the rest are honest).

4.5 Security analysis

Colo’s technical report [20] includes an analysis of its privacy guar-
antees (P1 and P2). Briefly, a device’s data is protected because of
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the following reasons. First, the local aggregation secure compu-
tation with the help of ZKP and OT prevents an adversary from
learning node or edge data (a neighbor cannot force another node
to pick an arbitrary output for predicate F , and the node picks the
predicate output obliviously while hiding its own input from the
neighbor). Second, the use of metadata hiding communication net-
work ensures that a network adversary cannot see traffic patterns.
And, third, the use of secret shares ensures that honest devices’ data
is included exactly once in global aggregation, leading to bounded
contribution in the query result.

5 IMPLEMENTATION

We have implemented a prototype of Colo in C++. Our prototype
is approximately 2,000 lines of code on top of existing frameworks
and libraries. The source code is available on Github.1
Parameters. We use Groth16 [11] as our underlying zkSNARK
(ZKP) scheme and we use BLS12-381 as its underlying curve for
a 128-bit security. For commitments, our prototype uses a ZKP-
friendly scheme called Poseidon [10]. For OT, we use the simplestOT
protocol [6]. For the metadata private messaging system, servers
follow Karaoke’s default configuration to generate noise messages
to achieve 𝜖 = ln 4,𝛿 = 10−4 differential privacy after 245 rounds
of message losses.

6 EVALUATION

Our evaluation focuses on highlighting the device- and server-side
overhead of Colo, for a variety of queries and we refer the readers
to our technical report [20] for more experiments that vary device
degree and the number of devices.
Baselines. We compare Colo to two baseline systems: a federated
non-private baseline and the state-of-the-art Mycelium [31] system
for privacy-preserving federated graph analytics.

We emphasize that Mycelium has a different and a stronger
threat model than Colo—Mycelium assumes a single byzantine
server, while Colo assumes a set of servers (e.g., 40) of which 20%
can be byzantine. Thus, Mycelium is not a direct comparison (but
the closest in the literature), and we use it to situate Colo’s costs,
as both Mycelium and Colo operate in strong threat models.
Testbed. Our testbed is Amazon EC2 and we use machines of type
c5.4xlarge to run the devices and the servers. Each suchmachine has
16 cores, 32 GiBmemory, and costs $0.328 per hour. For experiments,
we don’t run all devices, e.g., 1M, in one go, which would require
thousands of machines. Instead, we sequentially run batches of 1K
devices each.
Main results. Our evaluation compares the overhead of Colo and
the baselines for different queries, that is, different sizes of input
domain len(T ) of the query predicate. For these experiments, we
fix the number of devices to 1M where each device has at most 50
neighbors.
Device-side overhead. Figure 5 shows per-device cpu and network
overhead as a function of len(T ). Colo’s overhead for len(T ) = 2
(i.e., query Q1, Q2, Q4, and Q7 in Figure 1) is 10.27 s and 415 KiB, and
increases to 8.42 min and 4.93 MiB for len(T ) = 256 (this covers all
queries in Figure 1), and 29.9 min and 18.12 MiB for len(T ) = 1000.

1https://github.com/lonhuen/colo

Colo incurs much more overhead than the non-private baseline.
For instance, for len(T ) = 256, the baseline’s overhead is 0.003 s
and 6.36 KiB per device, while Colo’s overhead is 1.68 · 105 and 775
times higher (505.1 s and 4.93 MiB) for the cpu and the network,
respectively. However, relative to Mycelium, Colo’s overhead is
lower. For instance, for len(T ) = 256, a device in Mycelium requires
31, 650 s cpu time (8.79 h) and 5.73 GiB network transfers, while
Colo’s 505.1 s and 4.93 MiB is 62.6× and 1.16 · 103× lower.

Colo’s cost is dominated by local aggregation as the expensive
metatdata-hiding communication is instantiated over the resource-
ful servers, and the global aggregation is also lightweight (§3, §4.3.2,
§4.4). Further, the dominant local aggregation requires ZKP-friendly
commitments and range proofs alongside OT, primitives that have
been optimized in the literature (§4.3.1).

Although Colo’s overheads are lower, they increase with len(T )
as the number of cryptographic operations in Colo’s local aggrega-
tion protocol depend linearly on len(T ). For instance, the cpu time
of a Colo device is dominated by the time to generate the ZKP—that
each entry of T is within a range. This cost depends on the number
of entries, with the proof for a single entry taking 0.04 s. Similarly,
a Colo device’s network overhead increases approximately linearly
with len(T ); for instance, a device sends one commitment per entry
of T . In contrast, the overheads for the baselines do not depend on
len(T ) as their computation model multiplies vA.input · vB.input
directly, rather than enumerating all possible outputs. Thus, Colo’s
overheads will surpass that of Mycelium for a large len(T ).

Overall, for Colo’s target queries, its device-side overheads (in
the range of a few seconds to a few minutes in cpu time, and a few
hundred KiBs to a few MiBs in network transfers) appear to be in
the realm of practicality for modern mobile devices.
Server-side overhead. Figure 6 shows the server-side overhead for
Colo and the baseline systems. Colo’s server-side cost for len(T ) =
2 is 88 h cpu time (on a single core) and 214.78 GiB per server,
increases to 147.36 h and 3.46 TiB for len(T ) = 256, and 224.17 h
and 12.79 TiB for len(T ) = 1000.

As with the device-side overhead, Colo’s costs are significantly
higher than the non-private baseline, whose server incurs 58.6 min
cpu time and 6.36 GiB network transfers. Relative to Mycelium,
Colo’s server-side cpu is comparable, while the network is signifi-
cantly lower. For instance, for len(T ) = 256, the server-side cost for
Mycelium is 1304 h and 5737 TiB, while it is 5894 h and 138.4 TiB
for Colo’s 40 servers combined.

Although Colo’s server-side costs are substantial, since servers
are resourceful (e.g., the cpu time can be split across many cores),
we consider it affordable. We further assess this affordability by
calculating the dollar cost of renting the servers.

If applying a pricingmodel where the cpu cost per hour is $0.0205
and the cost of transferring one GiB is $0.01, Colo’s dollar cost per
query (over 1M devices) ranges from $3.95 to $37.6 per server, or
$158 to $1504 total for the 40 servers, depending on the query. In
contrast, the non-private baseline costs $0.08 and Mycelium costs
$57,490 per query. These figures for Colo are substantial but within
the reach of the budget of an entity like CDC. For instance, running
the cheapest query (which includes the superspreader query) every
two weeks will cost less than $4K annually.
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Figure 5: Device-side cost with a varying input domain size len(T ) of the query predicate. Queries Q1, Q2, Q4, Q7 from Figure 1 have len(T ) = 2,
Q3, Q5, Q6 have len(T ) ∈ [60, 240], and Q8 has len(T ) = 240.
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Figure 6: Total server-side cost for Colo (across its 40 servers combined) and the baselines with a varying input domain size len(T ) of the query
predicate. The total number of devices is 1M and the degree of each is 50 (except for Mycelium’s cpu cost where it is 10).

7 RELATEDWORK

Private data federation [1, 14, 22] focuses on a scenario where a set
of data owners hold private relational data and a query coordinator
orchestrates SQL queries on this data. The main difference with
Colo is that these existing works target a scenario with a few data
owners (e.g., a few tens) where each holds a significant partition of
the relational data. In contrast, Colo targets millions of participants.
While most works in private data federation consider parties to
be honest-but-curious, it is natural in Colo to consider malicious
parties given their number.

DStress [27] focuses on graph queries and a larger number of
participants: a few thousand. The key use case is understanding
systemic risk for financial institutions, which requires analyzing
inter-dependencies across institutions. However, DStress also as-
sumes honest-but-curious participants as financial institutions are
heavily regulated and audited, and thus unlikely to be malicious.

Gunther et al. [13] consider malicious devices alongside a set
of semi-honest servers to answer epidemiological queries such as
an estimate of the change in the number infections if schools are
closed for 14 days. However, they are limited to secure aggregation
across neighbors’ data and their protocol does not hide the result
of local aggregation.

Mycelium [31] is the closest related work to Colo. It supports a
broad set of queries, targets a large number of devices and assumes
they can be malicious. However, as discussed earlier and evaluated

empirically (§6), its costs are very high. Colo is a more affordable
alternative in a strong threat model, at least for the subset of queries
that Colo supports.

8 SUMMARY

Privacy-preserving federated graph analytics is an important prob-
lem as graphs are natural in many contexts. It specifically is appeal-
ing because it keeps raw data at the devices (without centralizing)
and does not release any intermediate computation results except
for the final query result. However, the state-of-the-art prior work
for this problem is expensive, especially for the devices that have
constrained resources. We presented Colo, a new system that oper-
ates in a strong threat model while considering malicious devices.
Colo addresses the challenge of gaining on efficiency through a
new secure computation protocol that allows devices to compute
privately and efficiently with their neighbors while hiding node,
edge, and topology data (§4.3.1, §4.3.2, §3). The per-device overhead
in Colo is a few minutes of cpu and a few MiB in network transfers,
while the server’s overhead ranges from several dollars to tens
of dollars per server, per query (§6). Our conclusion is that Colo
brings privacy-preserving federated graph analytics into the realm
of practicality for a certain class of queries. Future work included
extending Colo to support richer queries and malicious integrity,
and further lowering its overhead for query execution.
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