Use of parallel matrix algorithms for Laplace partial differential equations

A steady-state heat-flow problem on a rectangular $10cm \times 20cm$ metal sheet.

One edge maintains temperature of 100 degree, other three edges maintain 0 degree. What are the steady-state temperatures at interior points?
The mathematical model

Laplace equation:

\[
\frac{\partial^2 U(x, y)}{\partial x^2} + \frac{\partial^2 u(x, y)}{\partial y^2} = 0
\]

with the boundary condition:

\[
\begin{align*}
 u(x, 0) &= 0, & u(x, 10) &= 0. \\
 u(0, y) &= 0, & u(20, y) &= 100.
\end{align*}
\]

Finite difference method to solve this PDE:

- Discretize the region: Divide the function domain into a grid with gap \(h \) at each axis.
- At each point \((ih, jh)\), let \(u(ih, jh) = u_{i,j} \).
 Setup a linear equation using an approximated formula for numerical differentiation.
- Solve the linear equations to find values of all points \(u_{i,j} \).
Approximating numerical differentiation

\[f'(x) \approx \frac{f(x + h) - f(x)}{h} \quad \text{or} \quad f'(x) \approx \frac{f(x) - f(x - h)}{h} \]
\[f''(x) \approx \frac{f'(x + h) - f'(x)}{h} \approx \frac{f(x + h) - f(x)}{h} + \frac{f(x) - f(x - h)}{h} \]
Thus
\[f''(x) \approx \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} \]

Then
\[\frac{\partial^2 u(x_i, y_i)}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \]
\[\frac{\partial^2 u(x_i, y_i)}{\partial y^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} \]

Adding the above two equations
\[u_{i+1,j} - 2u_{i,j} + u_{i-1,j} + u_{i,j+1} - 2u_{i,j} + u_{i,j-1} = 0 \]
Then
\[4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = 0 \]
Example of Derived Linear Heat Equations

For this case: Let $u_{11} = x_1, u_{21} = x_2, u_{31} = x_3$.

At u_{11}, \[4x_1 - 0 - 0 - x_2 = 0\]

At u_{21}, \[4x_2 - x_1 - 0 - x_3 - 0 = 0\]

At u_{31}, \[4x_3 - x_2 - 0 - 100 - 0 = 0\]

\[
\begin{bmatrix}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
100
\end{bmatrix}
\]

Solutions:

$x_1 = 1.786, \ x_2 = 7.143, \ x_3 = 26.786$
Linear heat equations for a general 2D grid

Given a general \((n + 2) \times (n + 2)\) grid, we have \(n^2\) equations:

\[
4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = 0
\]

for \(1 \leq i, j \leq n\). Or express them as:

\[
u_{i,j} = (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})/4
\]

Example, \(r = 2, n = 6\).
We order the unknowns as

\[(u_{11}, u_{12}, \ldots, u_{1n}, u_{21}, u_{22}, \ldots, u_{2n}, \ldots, u_{n1}, \ldots, u_{nn})\]

For \(n = 2\), the ordering is:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix}
= \begin{bmatrix}
 u_{11} \\
 u_{12} \\
 u_{21} \\
 u_{22}
\end{bmatrix}
\]

The matrix is:

\[
\begin{bmatrix}
 4 & -1 & -1 & 0 \\
 -1 & 4 & 0 & -1 \\
 -1 & 0 & 4 & -1 \\
 0 & -1 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix}
= \begin{bmatrix}
 u_{01} + u_{10} \\
 u_{20} + u_{31} \\
 u_{02} + u_{13} \\
 u_{32} + u_{23}
\end{bmatrix}
\]
In general, the left side matrix is:

\[
\begin{bmatrix}
T & -I \\
-I & T & -I \\
-I & T & -I \\
& \ddots & \ddots & \ddots \\
-I & T
\end{bmatrix}_{n^2 \times n^2}
\]

\[
T =
\begin{bmatrix}
4 & -1 \\
-1 & 4 & -1 \\
& -1 & 4 & -1 \\
& & \ddots & \ddots & \ddots \\
& & & -1 & 4 \\
& & & & -1 & 4
\end{bmatrix}_{n \times n}
\]
The matrix is too sparse, direct methods for solving this system takes too much time.
The Jacobi Iterative Method

Given

\[4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = 0 \]

for \(1 \leq i, j \leq n \).

The Jacobi program:

Repeat

For \(i=1 \) to \(n \)

For \(j=1 \) to \(n \)

\[u_{i,j}^{new} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) \]

EndFor

EndFor

Until \(\| u_{i,j}^{new} - u_{i,j} \| < \epsilon \)

Called 5-point stencil computation as \(u_{i,j} \)
depends on 4 neighbors.
The Gauss-Seidel Method

Repeat
\[u^{old} = u. \]
For \(i = 1 \) to \(n \)
 For \(j = 1 \) to \(n \)
 \[u_{i,j} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}). \]
 EndFor
EndFor
Until \(\| u_{ij} - u_{ij}^{old} \| < \epsilon \)
Parallel Jacobi Method

Assume we have a mesh of $n \times n$ processors.
Assign $u_{i,j}$ to processor $p_{i,j}$.

The SPMD Jacobi program at processor $p_{i,j}$:

Repeat

Collect data from four neighbors: $u_{i+1,j}$, $u_{i-1,j}$, $u_{i,j+1}$, $u_{i,j-1}$ from $p_{i+1,j}$, $p_{i-1,j}$, $p_{i,j+1}$, $p_{i,j-1}$.

$u^\text{new}_{i,j} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})$.

$\text{diff}_{i,j} = |u^\text{new}_{ij} - u_{ij}|$

Do a global reduction to get the maximum of $\text{diff}_{i,j}$ as M.

Until $M < \epsilon$
Performance evaluation

- Each computation step takes $\omega = 5$ operations.
- There are 4 communication messages to be received. Assume sequential receiving. Communication costs $4(\alpha + \beta)$.
- Assume that the global reduction takes $(\alpha + \beta) \log n$.
- The sequential time $Seq = K\omega n^2$ where K is the number of steps.
- Assume
 $\omega = 0.5, \beta = 0.1, \alpha = 100, n = 500, p^2 = 2500$.
- The parallel time
 $PT = K(\omega + (4 + \log n)(\alpha + \beta))$

\[
Speedup = \frac{\omega \ast n^2}{\omega + (4 + \log n)(\alpha + \beta)} \approx 192
\]

\[
Efficiency = \frac{Speedup}{n^2} = 7.7\%.
\]
Grid partitioning

- Reduce the number of processors. Increase the granularity of computations.
- Map the $n \times n$ grid to processors using 2D block method.

Assume a $p \times p$ mesh, $\gamma = \frac{n}{p}$.

Example, $r = 2, n = 6$.
Re-write the kernel part of the sequential code as:

For \(b_i = 1 \) to \(p \)
 For \(b_j = 1 \) to \(p \)
 For \(i = (b_i - 1)\gamma + 1 \) to \(b_i\gamma \)
 For \(j = (b_j - 1)\gamma + 1 \) to \(b_j\gamma \)
 \(u_{i,j}^{\text{new}} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) \).
 EndFor
 EndFor
 EndFor
EndFor
Parallel SPMD code

On processor p_{b_i,b_j}:

Repeat

 Collect the data from its four neighbors.

 For $i = (b_i - 1)\gamma + 1$ to $b_i\gamma$

 For $j = (b_j - 1)\gamma + 1$ to $b_j\gamma$

 $u_{i,j}^{new} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})$.

 EndFor

 EndFor

 Compute the local maximum $diff_{f_{b_i,b_j}}$ for the difference between old values and new values.

 Do a global reduction to get the maximum $diff_{f_{b_i,b_j}}$ as M.

Until $M < \epsilon$
Performance evaluation

- At each processor, each computation step takes ωr^2 operations.
- The communication cost is $4(\alpha + r\beta)$.
- Assume that the global reduction takes $(\alpha + \beta) \log p$.
- The number of steps is K.
- Assume $\omega = 0.5, \beta = 0.1, \alpha = 100, n = 500, r = 100, p^2 = 25$.

$$PT = K(r^2\omega + (4 + \log p)(\alpha + r\beta))$$

$$Speedup = \frac{\omega r^2 p^2}{r^2\omega + (4 + \log p)(\alpha + r\beta)} \approx 21.2.$$

Efficiency $= 84\%$.

CS, UCSB Tao Yang
Red-Black Ordering

Reordering variables to eliminate most of data dependence in the Gauss Seidel algorithm.

- Points are divided into “red” points (white) and black points.
- First, black points are computed (using the old red point values).
- Second, red points are computed (using the new black point values).
Parallel code for red-black ordering

- Point \((i,j)\) is black if \(i+j\) is even.
- Point \((i,j)\) is red if \(i+j\) is odd.
- Computation on black points (stage 1) can be done in parallel.
- Computation on red points (stage 2) can be done in parallel.

Parallel Code (Kernel)

- For all points \((i,j)\) with \((i+j)\) mod \(2=0\), do in parallel
 \[
 u_{i,j} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}).
 \]
- For all points \((i,j)\) with \((i+j)\) mod \(2=1\), do in parallel
 \[
 u_{i,j} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}).
 \]