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Roadmap 

• Parallel hardware 

• Parallel software 

• Input and output 

• Performance 

• Parallel program design 
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Flynn’s Taxonomy 
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SISD 

Single instruction stream 

Single data stream 

(SIMD) 

Single instruction stream 

Multiple data stream 

MISD 

Multiple instruction stream 

Single data stream 

(MIMD) 

Multiple instruction stream 

Multiple data stream 



SIMD 

• Parallelism achieved by dividing data among the 

processors. 

 Applies the same instruction to multiple data items. 

 Called data parallelism. 
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control unit 

ALU1 ALU2 ALUn 

… 

for (i = 0; i < n; i++) 

     x[i] += y[i]; 

x[1] x[2] x[n] 

n data items 

n ALUs 



SIMD 

• What if we don’t have as many ALUs (Arithmetic Logic 

Units)  as data items?  

• Divide the work and process iteratively. 

• Ex. m = 4 ALUs (arithmetic logic unit)   and   n = 15 data 

items. 
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Round ALU1 ALU2 ALU3 ALU4 

1 X[0] X[1] X[2] X[3] 

2 X[4] X[5] X[6] X[7] 

3 X[8] X[9] X[10] X[11] 

4 X[12] X[13] X[14] 



SIMD drawbacks 

• All ALUs are required to execute the same 

instruction, or remain idle. 

 In classic design, they must also operate 

synchronously. 

 The ALUs have no instruction storage. 

• Efficient for large data parallel problems, but not 

flexible for more complex parallel problems. 
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Vector Processors 

• Operate on vectors (arrays) with vector 

instructions 

 conventional CPU’s operate on individual data 

elements or scalars. 

• Vectorized and pipelined functional units. 

 Use  vector registers to store data 

 Example: 

– A[1:10]=B[1:10] + C[1:10] 

– Instruction execution 

 Read instruction and decode it  

 Fetch these 10 A numbers and 10 B numbers  

 Add them and save results. 
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Vector processors – Pros/Cons 

• Pros 

 Fast. Easy to use. 

 Vectorizing compilers are good at identifying code to 

exploit. 

– Compilers also can provide information about code that 

cannot be vectorized. 

– Helps the programmer re-evaluate code. 

 High memory bandwidth. Use every item in a cache 

line. 

• Cons 

 Don’t handle irregular  data structures well 

 Limited ability to handle larger problems (scalability) 
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Graphics Processing Units (GPU) 

• Real time graphics application programming interfaces 

or API’s use points, lines, and triangles to internally 

represent the surface of an object. 

 

• A graphics processing pipeline converts 

 the internal representation into an  

 array of pixels that can be sent to  

 a computer screen. 

 Several stages of this pipeline  

(called shader functions) are programmable. 

 Typically just a few lines of C code. 
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GPUs 

• Shader functions are also implicitly parallel, since they 

can be applied to multiple elements in the graphics 

stream.  

 

• GPU’s can often optimize performance by using SIMD 

parallelism.  

 The current generation of GPU’s use SIMD 

parallelism. 

 Although they are not pure SIMD systems. 

• Market shares:   

    Intel: 62% NVIDIA 17%, AMD. 21% 
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MIMD 

• Supports multiple simultaneous instruction streams 

operating on multiple data streams.  

• Typically consist of a collection of fully independent 

processing units or cores, each of which has its own 

control unit and its own ALU. 

• Types of MIMD systems 

 Shared-memory systems 

– Most  popular ones use multicore processors. 

 (multiple CPU’s or cores on a single chip) 

 Distributed-memory systems 

– Computer clusters are the most popular 
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Shared Memory System 

• Each processor can access each memory 

location.  

 The processors usually communicate implicitly by 

accessing shared data structures 

 Two designs: UMA (Uniform Memory Access) 

and NUMA (Non-uniform Memory Access) 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



UMA Multicore Systems 
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Figure 2.5 

Time to access all 

the memory locations 

will be the same for 

all the cores. 



AMD 8-core CPU Bulldozer 
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NUMA Multicore System 
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Figure 2.6 
A memory location a core is 

directly connected to can be 

accessed faster than a memory 

location that must be accessed 

through another chip. 



Distributed Memory System 

• Clusters (most popular) 

 A collection of commodity systems. 

 Connected by a commodity interconnection network. 
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Clustered Machines at a Lab and a Datacenter 
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Interconnection networks 

• Affects performance of both distributed and shared 

memory systems. 

 

• Two categories: 

 Shared memory interconnects 

 Distributed memory interconnects 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



Shared memory interconnects: Bus 

 Parallel communication wires together with some 

hardware that controls access to the bus. 

 As the number of devices connected to the bus 

increases, contention for  shared bus use increases, 

and performance decreases. 
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Shared memory interconnects:  

Switched Interconnect 

 Uses switches to control the routing of data among 

the connected devices. 

 Crossbar –  Allows simultaneous communication 

among different devices. 

– Faster than buses.  But higher cost. 



Distributed memory interconnects 

• Two groups 

 Direct interconnect  

– Each switch is directly connected to a processor memory 

pair, and the switches are connected to each other. 

 

 Indirect interconnect 

– Switches may not be directly connected to a processor. 
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Direct interconnect 
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ring 2D torus (toroidal mesh) 



Direct interconnect: 2D Mesh vs 2D Torus 



How to measure network quality? 

• Bandwidth  

 The rate at which a link can transmit data. 

 Usually given in megabits or megabytes per second. 

• Bisection width 

 A measure of “number of  simultaneous 

communications” between two subnetworks within a 

network 

 

 

 The minimum number of links that must be removed 

to partition the network into two equal halves 

– 2 for a ring 

 Typically divide a network by a line or plane 

(bisection cut) 



More definitions on network performance 

• Any time data is transmitted, we’re interested in how 

long it will take for the data to reach its destination. 

• Latency 

 The time that elapses between the source’s beginning 

to transmit the data and the destination’s starting to 

receive the first byte. 

 Sometime  it is called startup cost. 

• Bandwidth 

 The rate at which the destination receives data after it 

has started to receive the first byte. 
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Message transmission time = α + m β 

latency (seconds) 

1/bandwidth (bytes per second) 

length of message (bytes) 

Network transmission cost 

Typical latency/startup cost:   2 microseconds ~ 1 millisecond 

Typical bandwidth:    100 MB ~ 1GB per second 



27 

Bisection width vs Bisection bandwidth 

bisection  

cut 

not a  

bisection 

cut  

• Example of bisection width 

 

 

 

 

 

 

 

• Bisection bandwidth 

 Sum bandwidth of links that cut the network into two 

equal halves. 

 Choose the minimum one. 



Bisection width:  more examples 
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A bisection of a 2D torus with p nodes: ? 2 sqrt(p) 



Fully connected network 

• Each switch is directly connected to every other 

switch. 
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Figure 2.11 

bisection width = p2/4 



Hypercube 

• Built inductively: 

 A one-dimensional hypercube is a fully-connected system 

with two processors.  

 A two-dimensional hypercube is built from two one-

dimensional hypercubes by joining “corresponding” switches.  

 Similarly a three-dimensional hypercube is built from two two-

dimensional hypercubes. 
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Hypercubes 
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Figure 2.12 

one- three-dimensional two- 



Indirect interconnects 

• Simple examples of indirect networks: 

 Crossbar 

 Omega network 

 

• A generic indirect network 
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Crossbar indrect interconnect 
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Figure 2.14 



An omega network 
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Figure 2.15 



Commodity Computing Clusters 

• Use already available computing  

components  

• Commodity servers,  

  interconnection network,  & storage 

• Less expensive while  

   Upgradable with standardization  

• Great computing power at low cost 

 



Typical  network for a cluster 

• 40 nodes/rack, 1000-4000 nodes in cluster 

• 1 Gbps bandwidth in rack, 8 Gbps out of rack 

• Node specs : 

8-16 cores, 32 GB RAM, 8×1.5 TB disks 

Aggregation switch 

Rack switch 



Layered Network in Clustered Machines 

• A layered example from Cisco: core, 

aggregation,  the edge or top-of-rack switch. 
• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html 



Hybrid Clusters with GPU 

• A Maryland cluster couples CPUs, GPUs, 

      displays, and storage. 

• Applications in visual and scientific computing 

Node in a CPU/GPU cluster 

host 

GPU 



Cloud Computing with Amazon EC2 

• On-demand elastic computing 

• Allocate a Linux or windows cluster only when you need.   

• Pay based on time usage of computing instance/storage 

• Expandable or shrinkable 



Usage Examples with Amazon EC2 

• A 32-node, 64-GPU cluster with 8TB storage  

• Each node is a AWS computing instance extended with 2 Nvidia 

M2050 GPUs, 22 GB of memory, and a 10Gbps Ethernet 

interconnect.  

• $82/hour to operate (based on Cycle Computing blog) 

• Annual cost example: 82*8*52=$34,112 

• Otherwise: ~$150+K to purchase + annual datacenter cost. 

• Another example from Cycle Computing Inc 

• Run 205,000 molecule simulation with 156,000 Amazon 

cores for 18 hours -- $33,000. 



Cache coherence 

• Programmers have no  

control over caches  

and when they get updated. 

• Hardware makes cache 

updated cache coherently 

• Snooping bus 

• Directory-based 



Cache coherence issue 

x = 2;  /* shared variable */ 

y0 eventually ends up = 2 

y1 eventually ends up = 6 

 

z1 = 4*7 or 4*2? 

X=7 

X=2 

X=2 



Snooping Cache Coherence 

• All cores share a bus . 

• When core 0 updates  the copy 

of x stored in its cache it also  

broadcasts this information 

 across the bus. 

• If core 1 is “snooping” the bus,  

it will see that x has been  

updated and it can mark 

 its copy of x as invalid. 

X=7 



PARALLEL SOFTWARE 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



The burden is on software 

• Hardware and compilers can keep up the pace 

needed. 

• From now on… 

 In shared memory programs: 

– Start a single process and fork threads. 

– Threads carry out tasks. 

 In distributed memory programs: 

– Start multiple processes. 

– Processes carry out tasks. 
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SPMD – single program multiple data 

• A SPMD programs consists of a single executable 

that can behave as if it were multiple different 

programs through the use of conditional branches. 

 

 

 

 

 

 

 

• Shared memory machines  threads  (or processes) 

• Distributed memory machines  processes 
Copyright © 2010, Elsevier 
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if  (I’m thread/process i) 

     do this; 

else 

     do that; 



Challenges: Nondeterminism of execution order 
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. . . 

printf  ( "Thread %d > my_val = %d\n" ,  

              my_rank , my_x ) ; 

. . . 

Execution 2: 

 

Thread 0 > my_val = 7 

Thread 1 > my_val = 19 

Execution 1: 

 

Thread 1 > my_val = 19 

Thread 0 > my_val = 7 



Input and Output 

• Two options for I/O 

 Option 1:  

– In distributed memory programs, only process 0 will access 

stdin.  

– In shared memory programs, only the master thread or 

thread 0 will access stdin. 

 

 Option 2:  

– all the processes/threads can access stdout and stderr. 

• Because of the indeterminacy of the order of output to 

stdout, in most cases only a single process/thread will 

be used for all output to stdout other than debugging 

output. 
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Input and Output: Practical Strategies 

 

• Debug output should always include the rank or id of 

the process/thread that’s generating the output. 

 

• Only a single process/thread will attempt to access any 

single file other than stdin, stdout, or stderr. So, for 

example, each process/thread can open its own, 

private file for reading or writing, but no two 

processes/threads will open the same file. 

 

• fflush(stdout) may be necessary to ensure output is not 

delayed when order is important. 

 printf(“hello \n”); fflush(stdout); 



PERFORMANCE 
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Speedup  

• Number of cores = p 

• Serial run-time = Tserial 

• Parallel run-time = Tparallel 
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Tparallel = Tserial  / p 



Speedup of a parallel program 

Tserial  

Tparallel 
S =  

Perfect speedup 

Actual speedup 



Speedup Graph Interpretation 
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• Linear speedup 
•Speedup  proportionally increases as p increases 

 
• Perfect linear speedup 
 

•Speedup =p 
 
• Superlinear speedup 

•Speedup >p 
•It is not possible in theory. 
•It is possible in practice  

•Data in sequential code does not fit into memory. 
•Parallel code divides data into many machines and 
they fit into memory. 

 

 

 



Efficiency of a parallel program 

E =  

Tserial  

Tparallel Speedup  

p  
=  

p  
=  

Tserial  

p  Tparallel . 

Measure how well-utilized the processors are,  compared to effort  

wasted in  communication and synchronization. 

Example: 



Typical speedup and efficiency  of parallel code 



Impact of Problem Sizes on Speedups and 

efficiencies  

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



Problem Size Impact on Speedup and Efficiency 



Strongly scalable 

• If we increase the number of processors 

(processes/threads) , efficiency is fixed without 

increasing problem size. This solution is strongly 

scalable. 

 Ex.  
–  Seq = n2     PT =  (n+n2)/p 

– Efficiency = n2/(n2 +n) 

 Not strongly scalable: 
– PT =  n+n2/p 

– Efficiency = n2/(n2 +np) 
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Weak Scalable 

• Efficiency is fixed when increasing the problem 

size at the same rate as increasing the number of 

processors, the solution is weakly scalable. 

 Ex.  Seq = n2     PT =  n+n2/p 

 Efficiency = n2/(n2 +np) 

 
 Increase problem size and #processors by k 

 (kn)2/((kn)2 +knkp) = n2/(n2 +np) 

 



Amdahl Law: Limitation of Parallel 

Performance 
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• Unless virtually all of a serial program is parallelized, 

the possible speedup is going to be  limited — 

regardless of the number of cores available. 

 

 



Example of Amdahl’s Law 

 

 

• Example: 

• We can parallelize 90% of a serial program. 

• Parallelization is “perfect” regardless of the number of 

cores p we use. 

• Tserial = 20 seconds 

• Runtime  of parallelizable part is  

 

• Runtime  of “unparallelizable” part is   

 

Overall parallel run-time is 

•   

0.9 x Tserial / p = 18 / p 

0.1 x Tserial  = 2 

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial  = 18 / p + 2 



Example (cont.) 

• Speed up 

0.9 x Tserial / p + 0.1 x Tserial 

Tserial 

S = = 
18 / p + 2 

20 

• S < 20/2 =10 

6.4 
5.7 

4.7 

2.5 



How to measure sequential and parallel 

time? 

• What time? 

 CPU time vs wall clock time 

• A program segment of interest? 

 Setup startup time 

 Measure finish time 
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Taking Timings for a Code Segment 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 

Example 

function 

MPI_Wtime() 

in MPI 

gettimeofday() 

in Linux 



Taking Timings 
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Measure parallel time with a barrier   
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PARALLEL PROGRAM 

DESIGN 
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Foster’s methodology: 4-stage design 

1. Partitioning: divide the computation to be performed 

and the data operated on by the computation into 

small tasks.  

 

The focus here should be on identifying tasks that can 

be executed in parallel. 
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Data 

Computation 
Tasks 



Foster’s methodology 

2. Communication:  

 Identify dependence among tasks  

 Determine inter-task communication 
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Foster’s methodology 

3. Agglomeration or aggregation: combine tasks and 

communications identified in the first step into larger 

tasks.  

 Reduce communication overhead Coarse grain 

tasks 

 May reduce parallelism sometime 
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Foster’s methodology 

4. Mapping: assign the composite tasks identified in the 

previous step to processes/threads. 

 

This should be done so that communication is 

minimized, and each process/thread gets roughly the 

same amount of work. 
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Tasks Proc 

Proc 



Concluding Remarks (1) 

• Parallel hardware 

 Shared memory and distributed memory 

architectures 

 Network topology for interconnect 

• Parallel software 

 We focus on software for homogeneous MIMD 

systems, consisting of a single program that obtains 

parallelism by branching. 

  SPMD programs. 
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Concluding Remarks (2) 

• Input and Output 

 One process or thread can access stdin, and all 

processes can access stdout and stderr.  

– However, because of nondeterminism, except for debug 

output we’ll usually have a single process or thread 

accessing stdout. 

• Performance 

 Speedup/Efficiency 

 Amdahl’s law 

 Scalability 

• Parallel Program Design 

 Foster’s methodology 
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