
Parallel Architecture, Software

And Performance

Chapter 2

UCSB CS140, T. Yang, 2014

Modified from texbook slides

Copyright © 2010, Elsevier

Inc. All rights Reserved

Roadmap

• Parallel hardware

• Parallel software

• Input and output

• Performance

• Parallel program design

#
 C

h
a
p
te

r S
u
b
title

Flynn’s Taxonomy

Copyright © 2010, Elsevier

Inc. All rights Reserved

SISD

Single instruction stream

Single data stream

(SIMD)

Single instruction stream

Multiple data stream

MISD

Multiple instruction stream

Single data stream

(MIMD)

Multiple instruction stream

Multiple data stream

SIMD

• Parallelism achieved by dividing data among the

processors.

 Applies the same instruction to multiple data items.

 Called data parallelism.

Copyright © 2010, Elsevier

Inc. All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)

 x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs

SIMD

• What if we don’t have as many ALUs (Arithmetic Logic

Units) as data items?

• Divide the work and process iteratively.

• Ex. m = 4 ALUs (arithmetic logic unit) and n = 15 data

items.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Round ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]

SIMD drawbacks

• All ALUs are required to execute the same

instruction, or remain idle.

 In classic design, they must also operate

synchronously.

 The ALUs have no instruction storage.

• Efficient for large data parallel problems, but not

flexible for more complex parallel problems.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Vector Processors

• Operate on vectors (arrays) with vector

instructions

 conventional CPU’s operate on individual data

elements or scalars.

• Vectorized and pipelined functional units.

 Use vector registers to store data

 Example:

– A[1:10]=B[1:10] + C[1:10]

– Instruction execution

 Read instruction and decode it

 Fetch these 10 A numbers and 10 B numbers

 Add them and save results.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Vector processors – Pros/Cons

• Pros

 Fast. Easy to use.

 Vectorizing compilers are good at identifying code to

exploit.

– Compilers also can provide information about code that

cannot be vectorized.

– Helps the programmer re-evaluate code.

 High memory bandwidth. Use every item in a cache

line.

• Cons

 Don’t handle irregular data structures well

 Limited ability to handle larger problems (scalability)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Graphics Processing Units (GPU)

• Real time graphics application programming interfaces

or API’s use points, lines, and triangles to internally

represent the surface of an object.

• A graphics processing pipeline converts

 the internal representation into an

 array of pixels that can be sent to

 a computer screen.

 Several stages of this pipeline

(called shader functions) are programmable.

 Typically just a few lines of C code.

Copyright © 2010, Elsevier

Inc. All rights Reserved

GPUs

• Shader functions are also implicitly parallel, since they

can be applied to multiple elements in the graphics

stream.

• GPU’s can often optimize performance by using SIMD

parallelism.

 The current generation of GPU’s use SIMD

parallelism.

 Although they are not pure SIMD systems.

• Market shares:

 Intel: 62% NVIDIA 17%, AMD. 21%

Copyright © 2010, Elsevier

Inc. All rights Reserved

MIMD

• Supports multiple simultaneous instruction streams

operating on multiple data streams.

• Typically consist of a collection of fully independent

processing units or cores, each of which has its own

control unit and its own ALU.

• Types of MIMD systems

 Shared-memory systems

– Most popular ones use multicore processors.

 (multiple CPU’s or cores on a single chip)

 Distributed-memory systems

– Computer clusters are the most popular

Copyright © 2010, Elsevier

Inc. All rights Reserved

Shared Memory System

• Each processor can access each memory

location.

 The processors usually communicate implicitly by

accessing shared data structures

 Two designs: UMA (Uniform Memory Access)

and NUMA (Non-uniform Memory Access)

Copyright © 2010, Elsevier

Inc. All rights Reserved

UMA Multicore Systems

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.5

Time to access all

the memory locations

will be the same for

all the cores.

AMD 8-core CPU Bulldozer

Copyright © 2010, Elsevier

Inc. All rights Reserved

NUMA Multicore System

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.6
A memory location a core is

directly connected to can be

accessed faster than a memory

location that must be accessed

through another chip.

Distributed Memory System

• Clusters (most popular)

 A collection of commodity systems.

 Connected by a commodity interconnection network.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Clustered Machines at a Lab and a Datacenter

Copyright © 2010, Elsevier

Inc. All rights Reserved

Interconnection networks

• Affects performance of both distributed and shared

memory systems.

• Two categories:

 Shared memory interconnects

 Distributed memory interconnects

Copyright © 2010, Elsevier

Inc. All rights Reserved

Shared memory interconnects: Bus

 Parallel communication wires together with some

hardware that controls access to the bus.

 As the number of devices connected to the bus

increases, contention for shared bus use increases,

and performance decreases.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Shared memory interconnects:

Switched Interconnect

 Uses switches to control the routing of data among

the connected devices.

 Crossbar – Allows simultaneous communication

among different devices.

– Faster than buses. But higher cost.

Distributed memory interconnects

• Two groups

 Direct interconnect

– Each switch is directly connected to a processor memory

pair, and the switches are connected to each other.

 Indirect interconnect

– Switches may not be directly connected to a processor.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Direct interconnect

Copyright © 2010, Elsevier

Inc. All rights Reserved

ring 2D torus (toroidal mesh)

Direct interconnect: 2D Mesh vs 2D Torus

How to measure network quality?

• Bandwidth

 The rate at which a link can transmit data.

 Usually given in megabits or megabytes per second.

• Bisection width

 A measure of “number of simultaneous

communications” between two subnetworks within a

network

 The minimum number of links that must be removed

to partition the network into two equal halves

– 2 for a ring

 Typically divide a network by a line or plane

(bisection cut)

More definitions on network performance

• Any time data is transmitted, we’re interested in how

long it will take for the data to reach its destination.

• Latency

 The time that elapses between the source’s beginning

to transmit the data and the destination’s starting to

receive the first byte.

 Sometime it is called startup cost.

• Bandwidth

 The rate at which the destination receives data after it

has started to receive the first byte.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Message transmission time = α + m β

latency (seconds)

1/bandwidth (bytes per second)

length of message (bytes)

Network transmission cost

Typical latency/startup cost: 2 microseconds ~ 1 millisecond

Typical bandwidth: 100 MB ~ 1GB per second

27

Bisection width vs Bisection bandwidth

bisection

cut

not a

bisection

cut

• Example of bisection width

• Bisection bandwidth

 Sum bandwidth of links that cut the network into two

equal halves.

 Choose the minimum one.

Bisection width: more examples

Copyright © 2010, Elsevier

Inc. All rights Reserved

A bisection of a 2D torus with p nodes: ? 2 sqrt(p)

Fully connected network

• Each switch is directly connected to every other

switch.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.11

bisection width = p2/4

Hypercube

• Built inductively:

 A one-dimensional hypercube is a fully-connected system

with two processors.

 A two-dimensional hypercube is built from two one-

dimensional hypercubes by joining “corresponding” switches.

 Similarly a three-dimensional hypercube is built from two two-

dimensional hypercubes.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Hypercubes

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.12

one- three-dimensional two-

Indirect interconnects

• Simple examples of indirect networks:

 Crossbar

 Omega network

• A generic indirect network

Copyright © 2010, Elsevier

Inc. All rights Reserved

Crossbar indrect interconnect

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.14

An omega network

Copyright © 2010, Elsevier

Inc. All rights Reserved

Figure 2.15

Commodity Computing Clusters

• Use already available computing

components

• Commodity servers,

 interconnection network, & storage

• Less expensive while

 Upgradable with standardization

• Great computing power at low cost

Typical network for a cluster

• 40 nodes/rack, 1000-4000 nodes in cluster

• 1 Gbps bandwidth in rack, 8 Gbps out of rack

• Node specs :

8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch

Layered Network in Clustered Machines

• A layered example from Cisco: core,

aggregation, the edge or top-of-rack switch.
• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html

Hybrid Clusters with GPU

• A Maryland cluster couples CPUs, GPUs,

 displays, and storage.

• Applications in visual and scientific computing

Node in a CPU/GPU cluster

host

GPU

Cloud Computing with Amazon EC2

• On-demand elastic computing

• Allocate a Linux or windows cluster only when you need.

• Pay based on time usage of computing instance/storage

• Expandable or shrinkable

Usage Examples with Amazon EC2

• A 32-node, 64-GPU cluster with 8TB storage

• Each node is a AWS computing instance extended with 2 Nvidia

M2050 GPUs, 22 GB of memory, and a 10Gbps Ethernet

interconnect.

• $82/hour to operate (based on Cycle Computing blog)

• Annual cost example: 82*8*52=$34,112

• Otherwise: ~$150+K to purchase + annual datacenter cost.

• Another example from Cycle Computing Inc

• Run 205,000 molecule simulation with 156,000 Amazon

cores for 18 hours -- $33,000.

Cache coherence

• Programmers have no

control over caches

and when they get updated.

• Hardware makes cache

updated cache coherently

• Snooping bus

• Directory-based

Cache coherence issue

x = 2; /* shared variable */

y0 eventually ends up = 2

y1 eventually ends up = 6

z1 = 4*7 or 4*2?

X=7

X=2

X=2

Snooping Cache Coherence

• All cores share a bus .

• When core 0 updates the copy

of x stored in its cache it also

broadcasts this information

 across the bus.

• If core 1 is “snooping” the bus,

it will see that x has been

updated and it can mark

 its copy of x as invalid.

X=7

PARALLEL SOFTWARE

Copyright © 2010, Elsevier

Inc. All rights Reserved

The burden is on software

• Hardware and compilers can keep up the pace

needed.

• From now on…

 In shared memory programs:

– Start a single process and fork threads.

– Threads carry out tasks.

 In distributed memory programs:

– Start multiple processes.

– Processes carry out tasks.

Copyright © 2010, Elsevier

Inc. All rights Reserved

SPMD – single program multiple data

• A SPMD programs consists of a single executable

that can behave as if it were multiple different

programs through the use of conditional branches.

• Shared memory machines  threads (or processes)

• Distributed memory machines  processes
Copyright © 2010, Elsevier

Inc. All rights Reserved

if (I’m thread/process i)

 do this;

else

 do that;

Challenges: Nondeterminism of execution order

Copyright © 2010, Elsevier

Inc. All rights Reserved

. . .

printf ("Thread %d > my_val = %d\n" ,

 my_rank , my_x) ;

. . .

Execution 2:

Thread 0 > my_val = 7

Thread 1 > my_val = 19

Execution 1:

Thread 1 > my_val = 19

Thread 0 > my_val = 7

Input and Output

• Two options for I/O

 Option 1:

– In distributed memory programs, only process 0 will access

stdin.

– In shared memory programs, only the master thread or

thread 0 will access stdin.

 Option 2:

– all the processes/threads can access stdout and stderr.

• Because of the indeterminacy of the order of output to

stdout, in most cases only a single process/thread will

be used for all output to stdout other than debugging

output.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Input and Output: Practical Strategies

• Debug output should always include the rank or id of

the process/thread that’s generating the output.

• Only a single process/thread will attempt to access any

single file other than stdin, stdout, or stderr. So, for

example, each process/thread can open its own,

private file for reading or writing, but no two

processes/threads will open the same file.

• fflush(stdout) may be necessary to ensure output is not

delayed when order is important.

 printf(“hello \n”); fflush(stdout);

PERFORMANCE

Copyright © 2010, Elsevier

Inc. All rights Reserved

Speedup

• Number of cores = p

• Serial run-time = Tserial

• Parallel run-time = Tparallel

Copyright © 2010, Elsevier

Inc. All rights Reserved

Tparallel = Tserial / p

Speedup of a parallel program

Tserial

Tparallel
S =

Perfect speedup

Actual speedup

Speedup Graph Interpretation

Copyright © 2010, Elsevier

Inc. All rights Reserved

• Linear speedup
•Speedup proportionally increases as p increases

• Perfect linear speedup

•Speedup =p

• Superlinear speedup

•Speedup >p
•It is not possible in theory.
•It is possible in practice

•Data in sequential code does not fit into memory.
•Parallel code divides data into many machines and
they fit into memory.

Efficiency of a parallel program

E =

Tserial

Tparallel Speedup

p
=

p
=

Tserial

p Tparallel .

Measure how well-utilized the processors are, compared to effort

wasted in communication and synchronization.

Example:

Typical speedup and efficiency of parallel code

Impact of Problem Sizes on Speedups and

efficiencies

Copyright © 2010, Elsevier

Inc. All rights Reserved

Problem Size Impact on Speedup and Efficiency

Strongly scalable

• If we increase the number of processors

(processes/threads) , efficiency is fixed without

increasing problem size. This solution is strongly

scalable.

 Ex.
– Seq = n2 PT = (n+n2)/p

– Efficiency = n2/(n2 +n)

 Not strongly scalable:
– PT = n+n2/p

– Efficiency = n2/(n2 +np)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Weak Scalable

• Efficiency is fixed when increasing the problem

size at the same rate as increasing the number of

processors, the solution is weakly scalable.

 Ex. Seq = n2 PT = n+n2/p

 Efficiency = n2/(n2 +np)

 Increase problem size and #processors by k

 (kn)2/((kn)2 +knkp) = n2/(n2 +np)

Amdahl Law: Limitation of Parallel

Performance

Copyright © 2010, Elsevier

Inc. All rights Reserved

• Unless virtually all of a serial program is parallelized,

the possible speedup is going to be limited —

regardless of the number of cores available.

Example of Amdahl’s Law

• Example:

• We can parallelize 90% of a serial program.

• Parallelization is “perfect” regardless of the number of

cores p we use.

• Tserial = 20 seconds

• Runtime of parallelizable part is

• Runtime of “unparallelizable” part is

Overall parallel run-time is

•

0.9 x Tserial / p = 18 / p

0.1 x Tserial = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2

Example (cont.)

• Speed up

0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =
18 / p + 2

20

• S < 20/2 =10

6.4
5.7

4.7

2.5

How to measure sequential and parallel

time?

• What time?

 CPU time vs wall clock time

• A program segment of interest?

 Setup startup time

 Measure finish time

Copyright © 2010, Elsevier

Inc. All rights Reserved

Taking Timings for a Code Segment

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example

function

MPI_Wtime()

in MPI

gettimeofday()

in Linux

Taking Timings

Copyright © 2010, Elsevier

Inc. All rights Reserved

Measure parallel time with a barrier

Copyright © 2010, Elsevier

Inc. All rights Reserved

PARALLEL PROGRAM

DESIGN

Copyright © 2010, Elsevier

Inc. All rights Reserved

Foster’s methodology: 4-stage design

1. Partitioning: divide the computation to be performed

and the data operated on by the computation into

small tasks.

The focus here should be on identifying tasks that can

be executed in parallel.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Data

Computation
Tasks

Foster’s methodology

2. Communication:

 Identify dependence among tasks

 Determine inter-task communication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Foster’s methodology

3. Agglomeration or aggregation: combine tasks and

communications identified in the first step into larger

tasks.

 Reduce communication overhead Coarse grain

tasks

 May reduce parallelism sometime

Copyright © 2010, Elsevier

Inc. All rights Reserved

Foster’s methodology

4. Mapping: assign the composite tasks identified in the

previous step to processes/threads.

This should be done so that communication is

minimized, and each process/thread gets roughly the

same amount of work.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Tasks Proc

Proc

Concluding Remarks (1)

• Parallel hardware

 Shared memory and distributed memory

architectures

 Network topology for interconnect

• Parallel software

 We focus on software for homogeneous MIMD

systems, consisting of a single program that obtains

parallelism by branching.

 SPMD programs.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (2)

• Input and Output

 One process or thread can access stdin, and all

processes can access stdout and stderr.

– However, because of nondeterminism, except for debug

output we’ll usually have a single process or thread

accessing stdout.

• Performance

 Speedup/Efficiency

 Amdahl’s law

 Scalability

• Parallel Program Design

 Foster’s methodology

 Copyright © 2010, Elsevier

Inc. All rights Reserved

