
Shared Memory Programming

with Pthreads

Pacheco. Chapter 4

T. Yang. UCSB CS140. Spring 2014

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• Shared memory programming: Overview

• POSIX pthreads

• Critical section & thread synchronization.

 Mutexes.

 Producer-consumer synchronization and
semaphores.

 Barriers and condition variables.

 Read-write locks.

• Thread safety.

#
 C

h
a
p
te

r S
u
b
title

Shared Memory Architecture

Copyright © 2010, Elsevier

Inc. All rights Reserved

Processes and Threads

• A process is an instance of a running (or

suspended) program.

• Threads are analogous to a “light-weight” process.

• In a shared memory program a single process may

have multiple threads of control.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Logical View of Threads

• Threads are created within a process

P1

sh sh sh

foo

T1

Process hierarchy A process

T2
T4

T5 T3

shared code, data

and kernel context

Concurrent Thread Execution

• Two threads run concurrently if their logical flows

overlap in time

• Otherwise, they are sequential (we’ll see that

processes have a similar rule)

• Examples:

 Concurrent:

A & B, A&C

 Sequential:

B & C

Time

Thread A Thread B Thread C

Execution Flow on one-core or multi-core

systems

Concurrent execution on a single core system

Parallel execution on a multi-core system

Benefits of multi-threading

• Responsiveness

• Resource Sharing

 Shared memory

• Economy

• Scalability

 Explore multi-core CPUs

9

Thread Programming with Shared Memory

• Program is a collection of threads of control.

 Can be created dynamically

• Each thread has a set of private variables, e.g., local stack

variables

• Also a set of shared variables, e.g., static variables, shared

common blocks, or global heap.

 Threads communicate implicitly by writing and reading

shared variables.

 Threads coordinate by synchronizing on shared

variables

Pn P1 P0

s
s = ...

Shared memory

i: 2 i: 5 Private

memory

i: 8

10

Shared Memory Programming

Several Thread Libraries/systems

• Pthreads is the POSIX Standard

 Relatively low level

 Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming

 Support for scientific programming on shared memory

 http://www.openMP.org

• TBB: Thread Building Blocks

 Intel

• CILK: Language of the C “ilk”

 Lightweight threads embedded into C

• Java threads

 Built on top of POSIX threads

 Object within Java language

http://www.openMP.org

11

Overview of POSIX Threads

• POSIX: Portable Operating System Interface for

UNIX

 Interface to Operating System utilities

• PThreads: The POSIX threading interface

 System calls to create and synchronize threads

 In CSIL, compile a c program with gcc -lpthread

• PThreads contain support for

 Creating parallelism and synchronization

 No explicit support for communication, because

shared memory is implicit; a pointer to shared data

is passed to a thread

Creation of Unix processes vs. Pthreads

C function for starting a thread

Copyright © 2010, Elsevier

Inc. All rights Reserved

pthread.h

pthread_t

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

One object for
each thread.

pthread_t objects

• Opaque

• The actual data that they store is system-

specific.

• Their data members aren’t directly

accessible to user code.

• However, the Pthreads standard

guarantees that a pthread_t object does

store enough information to uniquely

identify the thread with which it’s

associated.

Copyright © 2010, Elsevier

Inc. All rights Reserved

A closer look (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

We won’t be using, so we just pass NULL.

Allocate before calling.

A closer look (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

The function that the thread is to run.

Pointer to the argument that should

be passed to the function start_routine.

Function started by pthread_create

• Prototype:

 void* thread_function (void* args_p) ;

• Void* can be cast to any pointer type in C.

• So args_p can point to a list containing one or

more values needed by thread_function.

• Similarly, the return value of thread_function can

point to a list of one or more values.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Wait for Completion of Threads

pthread_join(pthread_t *thread, void

**result);

 Wait for specified thread to finish. Place exit value

into *result.

• We call the function pthread_join once for each

thread.

• A single call to pthread_join will wait for the thread

associated with the pthread_t object to complete.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

Example of Pthreads with join

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

 pthread_join(thread0, NULL);

 pthread_join(thread1, NULL);

}

Some More Pthread Functions

• pthread_yield();

 Informs the scheduler that the thread is willing to yield

• pthread_exit(void *value);

 Exit thread and pass value to joining thread (if exists)

Others:

• pthread_t me; me = pthread_self();

 Allows a pthread to obtain its own identifier pthread_t

thread;

• Synchronizing access to shared variables

 pthread_mutex_init, pthread_mutex_[un]lock

 pthread_cond_init, pthread_cond_[timed]wait

Textbook Hello World example

Copyright © 2010, Elsevier

Inc. All rights Reserved

declares the various Pthreads

functions, constants, types, etc.

Hello World! (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Hello World! (3)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Compiling a Pthread program

Copyright © 2010, Elsevier

Inc. All rights Reserved

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

Running a Pthreads program

Copyright © 2010, Elsevier

Inc. All rights Reserved

. / pth_hello <number of threads>

. / pth_hello 1

Hello from the main thread

Hello from thread 0 of 1

. / pth_hello 4

Hello from the main thread

Hello from thread 0 of 4

Hello from thread 1 of 4

Hello from thread 2 of 4

Hello from thread 3 of 4

Issues in Threads vs. Processes

• Shared variables as global variables exist in

threads

 Can introduce subtle and confusing bugs!

 Limit use of global variables to situations in which

they’re really needed.

• Starting threads

 Processes in MPI are usually started by a script.

 In Pthreads the threads are started by the program

executable.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Difference between Single and Multithreaded

Processes
Shared memory access for code/data

Separate control flow -> separate stack/registers

Matrix-Vector Multiplication with

Pthreads

Textbook P.159-162

Copyright © 2010, Elsevier

Inc. All rights Reserved

Sequential code

Partitioning for Matrix-Vector

Multiplication

• Task partitioning

 For (i=0; i<m; i=i+1)

Task graph

Mapping to

threads

Task Si for Row i

y[i]=0;

For (j=0; j<n; j=j+1)

 y[i]=y[i] +a[i][j]*x[j]

S0 S1 Sm
...

S0 S1
...

Thread 0

S2 S3

Thread 1

Using 3 Pthreads for 6 Rows: 2 row per

thread

Copyright © 2010, Elsevier

Inc. All rights Reserved

Code for Si

S2, S3

S4,S5

S0, S1

Code for S0

Pthread code for thread with ID rank

Copyright © 2010, Elsevier

Inc. All rights Reserved

Task Si

CRITICAL SECTIONS

Copyright © 2010, Elsevier

Inc. All rights Reserved

Data Race Example

Thread 0

 for i = 0, n/2-1

 s = s + f(A[i])

Thread 1

 for i = n/2, n-1

 s = s + f(A[i])

static int s = 0;

• Also called critical section problem.

• A race condition or data race occurs when:

- two processors (or two threads) access the same variable,

and at least one does a write.

- The accesses are concurrent (not synchronized) so they

could happen simultaneously

Synchronization Solutions

1. Busy waiting

2. Mutex (lock)

3. Semaphore

4. Conditional Variables

5. Barriers

Example of Busy Waiting

Thread 0

 int temp, my_rank

 for i = 0, n/2-1

 temp0=f(A[i])

 while flag!=my_rank;

 s = s + temp0

 flag= (flag+1) %2

Thread 1

 int temp, my_rank

 for i = n/2, n-1

 temp=f(A[i])

 while flag!=my_rank;

 s = s + temp

 flag= (flag+1) %2

static int s = 0;

static int flag=0

• A thread repeatedly tests a condition, but, effectively, does no

useful work until the condition has the appropriate value.

•Weakness: Waste CPU resource. Sometime not safe with

compiler optimization.

Application Pthread Code: Estimating π

Copyright © 2010, Elsevier

Inc. All rights Reserved

Mapping for a multi-core machine

•Two thread distribution

Divide computation to 2 threads or more using block

mapping. For example, n=20

• No of threads = thread_count

• No of iterations per thread my_n= n/ thread_count

•Assume it is an integer?

• Load assigned to my thread:

•First iteration: my_n * my_rank

•Last iteration: First iteration + my_n -1

Thread 0:

 Iterations 0, 1, 2, .., 9

Thread 1:

 Iterations 10, 11, 12, .., 19

A thread function for computing π

Copyright © 2010, Elsevier

Inc. All rights Reserved

Unprotected critical section.

Running results with 1 thread and 2

threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

As n becomes larger,

• The one thread result becomes more accurate,

gaining more correct digits

• The two-thread result is getting worse or strange

Possible race condition

Copyright © 2010, Elsevier

Inc. All rights Reserved

Busy-Waiting

• A thread repeatedly tests a condition, but, effectively,

does no useful work until the condition has the

appropriate value.

• Beware of optimizing compilers, though!

Copyright © 2010, Elsevier

Inc. All rights Reserved

flag initialized to 0 by main thread

Pthreads global sum with busy-waiting

Copyright © 2010, Elsevier

Inc. All rights Reserved

Busy waiting until I can

modify the global variable.

sum is a shared global variable. Can we

transform code and minimize thread

interaction on this variable?

Global sum with local sum variable/busy waiting (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum with local sum variable/busy waiting

Copyright © 2010, Elsevier

Inc. All rights Reserved

my_sum is a local variable, not shared.

Still have to contribute my_sum at the

end to the global sum variable.

Mutexes (Locks)

• Code structure

• Mutex (mutual exclusion) is a special type of variable

used to restrict access to a critical section to a single

thread at a time.

• guarantee that one thread “excludes” all other threads

while it executes the critical section.

• When A thread waits on a mutex/lock,

• CPU resource can be used by others.

Acquire mutex lock

Critical section

Unlock/Release mutex

Mutexes in Pthreads

• A special type for mutexes: pthread_mutex_t.

• To gain access to a critical section, call

• To release

• When finishing use of a mutex, call

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Copyright © 2010, Elsevier

Inc. All rights Reserved

Run-times (in seconds) of π programs using n = 108

terms on a system with two four-core processors.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Possible sequence of events with busy-waiting

and more threads than cores.

Producer-consumer

Synchronization and

Semaphores

Copyright © 2010, Elsevier

Inc. All rights Reserved

Issues

• Busy-waiting enforces the order threads access a

critical section.

• Using mutexes, the order is left to chance and the

system.

• There are applications where we need to control

the order threads access the critical section.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Why Semaphores?

• Examples of complex synchronization

 Allow a resource to be shared among multiple

threads.

– Mutex: no more than 1 thread for one protected region.

 Allow a thread waiting for a condition after a signal

– E.g. Control the access order of threads entering the

critical section.

– For mutexes, the order is left to chance and the system.

Synchronization Functionality/weakness

Busy waiting Spinning for a condition. Waste

resource. Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Handle more complex signal-based

synchronization

Problems with a mutex solution in

multiplying many matrices

Copyright © 2010, Elsevier

Inc. All rights Reserved

product_mat= A*B*C

Out of order multiplication  product_mat= A*C*B

That is wrong

The order of

multiplication is not

defined

Producer-Consumer Example

• Thread x produces a message for Thread x+1.

 Last thread produces a message for thread 0.

• Each thread prints a message sent from its source.

• Will there be many null messages printed?

 A consumer thread prints its source message before

this message is produced.

 How to avoid that?

T0 T1 T2

First attempt at sending messages using pthreads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Produce a message for a destination

thread

Consume a message

Semaphore: Generalization from mutex

locks

• Semaphore S – integer variable

• Can only be accessed /modified via two

 (atomic) operations

 wait (S) { //also called P()

 while S <= 0 wait in a queue;

 S--;

 }

 post(S) { //also called V()

 S++;

 Wake up a thread that waits in the queue.

 }

Syntax of the various semaphore functions

Copyright © 2010, Elsevier

Inc. All rights Reserved

Semaphores are not part of Pthreads;

you need to add this.

Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %ld", dest, my_rank);

messages[dest] = my_msg;

sem_post(&semaphores[dest]);

 /* signal the dest thread*/

sem_wait(&semaphores[my_rank]);

 /* Wait until the source message is created */

printf("Thread %ld > %s\n", my_rank,

messages[my_rank]);

BARRIERS AND CONDITION

VARIABLES

Copyright © 2010, Elsevier

Inc. All rights Reserved

Barriers

• Synchronizing the threads to make sure that they all

are at the same point in a program is called a barrier.

• No thread can cross the barrier until all the threads

have reached it.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Application: Start timing of all threads at

a fixed point.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Using barriers for debugging

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implement a barrier with busy-waiting and

a mutex

• A shared counter as # of threads waiting in this point.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Need one counter

variable for each

instance of the barrier,

otherwise problems

are likely to occur.

Implementing a barrier with semaphores

Copyright © 2010, Elsevier

Inc. All rights Reserved

Protect counter
Wait all threads to come

Condition Variables

• Why?

• More programming primitives to simplify code for

synchronization of threads

Synchronization Functionality

Busy waiting Spinning for a condition. Waste resource.

Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Signal-based synchronization. Allow

sharing (not wait unless semaphore=0)

Barrier Rendezvous-based synchronization

Condition

variables

More complex synchronization: Let

threads wait until a user-defined

condition becomes true

Synchronization Primitive: Condition Variables

• Used together with a lock

• One can specify more general waiting
condition compared to semaphores.

• A thread is blocked when condition is no
true:

 placed in a waiting queue, yielding
CPU resource to somebody else.

Wake up until receiving a signal

Pthread synchronization: Condition

variables
int status; pthread_condition_t cond;

const pthread_condattr_t attr;

pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);

status = pthread_cond_destroy(&cond);

status = pthread_cond_wait(&cond,&mutex);

 -wait in a queue until somebody wakes up. Then the mutex is

reacquired.

status = pthread_cond_signal(&cond);

 - wake up one waiting thread.

status = pthread_cond_broadcast(&cond);

 - wake up all waiting threads in that condition

 Thread 1: //try to get into critical section and

 wait for the condition

Mutex_lock(mutex);

 While (condition is not satisfied)

 Cond_Wait(mutex, cond);

 Critical Section;

Mutex_unlock(mutex)

 Thread 2: // Try to create the condition.

Mutex_lock(mutex);

When condition can satisfy, Signal(cond);

Mutex_unlock(mutex);

How to Use Condition Variables: Typical

Flow

Producer deposits data in a buffer for others to consume

Condition variables for in producer-

consumer problem with unbounded buffer

Condition Variables for consumer-producer

problem with unbounded buffer

• int avail=0; // # of data items available for consumption

• Pthread mutex m and condition cond;

• Consumer thread:

 multex_lock(&m)

 while (avail <=0) Cond_Wait(&cond, &m);

 Consume next item; avail = avail-1;

 mutex_unlock(&mutex)

 Producer thread:

 mutex_lock(&m);

 Produce next item; availl = avail+1;

 Cond_signal(&cond); //notify an item is available

 mutex_unlock(&m);

When to use condition broadcast?

• When waking up one thread to run
is not sufficient.

• Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.

Running trace of malloc()/free()

• Initially 10 bytes are free.

• m() stands for malloc(). f() for free()

Thread 1:

m(10) – succ

f(10) –broadcast

m(7) – wait

Resume m(7)-wait

Thread 2:

m(5) – wait

Resume m(5)-succ

f(5) –broadcast

Thread 3:

m(5) – wait

Resume m(5)-succ

m(3) –wait

Resume m(3)-succ

Time

Implementing a barrier with condition variables
Text book p.180

Copyright © 2010, Elsevier

Inc. All rights Reserved

READ-WRITE LOCKS

Copyright © 2010, Elsevier

Inc. All rights Reserved

Synchronization Example for Readers-Writers Problem

• A data set is shared among a number of concurrent

threads.

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

• Requirement:

 allow multiple readers to read at the same time.

 Only one writer can access the shared data at the same

time.

• Reader/writer access permission table:

Reader Writer

Reader OK No

Writer NO No

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader ? ?

Writer ? ?

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader no no

Writer no no

2nd try using a lock + readcount

• writer
 do {

 mutex_lock(w);// Use writer mutex lock

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 readcount++; // add a reader counter.

 if(readcount==1) mutex_lock(w);

 // reading is performed

 readcount--;

 if(readcount==0) mutex_unlock(w);

 } while (TRUE);

Readers-Writers Problem with semaphone

• Shared Data

 Data set

 Lock mutex (to protect readcount)

 Semaphore wrt initialized to 1 (to

synchronize between

readers/writers)

 Integer readcount initialized to 0

Readers-Writers Problem

• A writer

 do {

 sem_wait(wrt) ; //semaphore wrt

 // writing is performed

 sem_post(wrt) ; //

 } while (TRUE);

Readers-Writers Problem (Cont.)

• Reader

 do {

 mutex_lock(mutex);

 readcount ++ ;

 if (readcount == 1)

 sem_wait(wrt); //check if anybody is writing

 mutex_unlock(mutex)

 // reading is performed

 mutex_lock(mutex);

 readcount - - ;

 if (readcount == 0)

 sem_post(wrt) ; //writing is allowed now

 nlock(mutex) ;

 } while (TRUE);

Application case: Sharing a sorted linked list of

integers

• Demonstrate controlling of access to a large, shared

data structure

• Operations supported

 Member, Insert, and Delete.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Membership operation for a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Insert operation: Inserting a new node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Inserting a new node into a list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Find the right position

in the sorted list

Insert to this position

Delete operation: remove a node from a

linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Deleting a node from a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Find a node with the

given value

Remove this node

A Multi-Threaded Linked List

• Allow a sorted linked list to be accessed by multiple

threads

• In order to share access to the list, define head_p to

be a global variable.

 This will simplify the function headers for Member,

Insert, and Delete,

 since we won’t need to pass in either head_p or a

pointer to head_p: we’ll only need to pass in the

value of interest.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Simultaneous access by two threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Solution #1

• An obvious solution is to simply lock the list any

time that a thread attempts to access it.

• A call to each of the three functions can be

protected by a mutex.

Copyright © 2010, Elsevier

Inc. All rights Reserved

In place of calling Member(value).

Issues

• We’re serializing access to the list.

• If the vast majority of our operations are calls to Member,

we’ll fail to exploit this opportunity for parallelism.

• On the other hand, if most of our operations are calls to

Insert and Delete,

 This may be the best solution

– since serialization of infrequent operations has minimum

performance impact.

– Easy to implement.

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

List-

level

Member Insert Delete

Member no no no

Insert no no no

Delete no no no

Solution #2

• Instead of locking the entire list, lock individual

nodes.

 A “finer-grained” approach: One mutex lock per

node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

List-

level

Member Insert Delete

Member yes yes yes

Insert yes yes yes

Delete yes yes yes

Node-

level

Member Insert Delete

Member no no no

Insert no no no

Delete no no no

Implementation of Member with one mutex per list node (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implementation of Member with one mutex per list node (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Issues

• Much more complex than the original Member function.

• Much slower,

 each time a node is accessed, a mutex must be

locked and unlocked.

• Significant space cost

 Adding a mutex field to each node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Motivation for using Pthreads Read-Write

Locks

• Neither of our multi-threaded linked lists exploits the

potential for simultaneous access to any node by

threads that are executing Member.

• The first solution only allows one thread to access the

entire list at any instant.

• The second only allows one thread to access any

given node at any instant.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Pthreads Read-Write Locks

• A read-write lock is somewhat like a mutex except that

it provides two lock functions.

 The first lock function locks the read-write lock for

reading, while the second locks it for writing.

• Example for

a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

Pthreads Read-Write Locks

• Multiple threads can simultaneously obtain the

lock by calling the read-lock function, while

only one thread can obtain the lock by calling

the write-lock function.

• If any threads own the lock for reading, any

threads that want to obtain the lock for writing

will block in the call to the write-lock function.

• If any thread owns the lock for writing, any

threads that want to obtain the lock for reading

or writing will block in their respective locking

functions.

Copyright © 2010, Elsevier

Inc. All rights Reserved

List-

level

Member Insert Delete

Member yes no no

Insert no no no

Delete no no no

A performance comparison of 3

implementations for a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Total time in second for executing 100,000 operations.

99.9% Member

0.05% Insert

0.05% Delete

Linked List Performance: Comparison

Copyright © 2010, Elsevier

Inc. All rights Reserved

Total time in seconds for executing 100,000 operations

80% Member

10% Insert

10% Delete

Issues with Threads: False Sharing,

Deadlocks, Thread-safety

Copyright © 2010, Elsevier

Inc. All rights Reserved

Caches, Cache-Coherence, and False Sharing

• Recall that chip designers have added blocks of

relatively fast memory to processors called cache

memory.

• The use of cache memory can have a huge impact on

shared-memory.

• A write-miss occurs when a core tries to update a

variable that’s not in cache, and it has to access main

memory.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Block-based pthreads matrix-vector

multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Run-times and efficiencies of matrix-vector

multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

(times are in seconds)

Deadlock and Starvation

• Deadlock – two or more threads are waiting
indefinitely for an event that can be only caused by
one of these waiting threads

• Starvation – indefinite blocking (in a waiting queue
forever).
 Let S and Q be two mutex locks:

 P0 P1

 Lock(S); Lock(Q);

 Lock(Q); Lock(S);

 . .

 . .

 . .

 Unlock(Q); Unlock(S);

 Unlock(S); Unlock(Q);

Deadlock Avoidance

• Order the locks and always acquire the locks in
that order.

• Eliminate circular waiting

 :

 P0 P1

 Lock(S); Lock(S);

 Lock(Q); Lock(Q);

 . .

 . .

 . .

 Unlock(Q); Unlock(Q);

 Unlock(S); Unlock(S);

Thread-Safety

• A block of code is thread-safe if it can be

simultaneously executed by multiple threads without

causing problems.

• When you program your own functions, you know if

they are safe to be called by multiple threads or not.

• You may forget to check if system library functions

used are thread-safe.

 Unsafe function: strtok()from C string.h library

 Other example.

– The random number generator random in stdlib.h.

– The time conversion function localtime in time.h.

Example of using strtok()

• “Tokenize” a English text file

 Tokens are contiguous sequences of characters

separated by a white-space, a tab, or a newline.

 Example: “Take UCSB CS140”

Three tokens: “Take”, “UCSB”, “CS140”

• Divide the input file into lines of text and assign the

lines to the threads in a round-robin fashion.

 Each thread tokenizes a line using strtok()

 Line 1  thread 0, Line 2 thread 1, . . . , the tth

goes to thread t, the t +1st goes to thread 0, etc.

 Serialize access to input lines using semaphores

 Copyright © 2010, Elsevier

Inc. All rights Reserved

The strtok function

• The first time it’s called,

 the string argument is the text to be tokenized (Our

line of input)

 strtok caches a pointer to string

• For subsequent calls, it returns successive tokens

taken from the cached copy

 the first argument should be NULL.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multi-threaded tokenizer (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multi-threaded tokenizer (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

First token

Next token

Running with one thread

• It correctly tokenizes the input stream with 1 thread

Pease

porridge

hot

… Copyright © 2010, Elsevier

Inc. All rights Reserved

Input file:

Pease porridge hot.

Pease porridge cold.

Pease porridge in the pot

Nine days old.

Running with two threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Oops!

What happened?

• strtok caches the input line by declaring a variable to

have static (persistent) storage class.

 Unfortunately this cached string is shared, not

private.

• Thus, thread 0’s call to strtok with the third line of the

input has apparently overwritten the contents of thread

1’s call with the second line.

• So the strtok function

is not thread-safe.

If multiple threads call

it simultaneously, the

output may not be

correct.
Copyright © 2010, Elsevier

Inc. All rights Reserved

“re-entrant” (thread safe) functions

• In some cases, the C standard specifies an

alternate, thread-safe, version of a function.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (1)

• A thread in shared-memory programming is analogous

to a process in distributed memory programming.

 However, a thread is often lighter-weight than a full-

fledged process.

• In Pthreads programs, all the threads have access to

global variables, while local variables usually are

private to the thread running the function.

• When multiple threads access a shared resource

without controling, it may result in an error: we have a

race condition.

 A critical section is a block of code that updates a

shared resource that can only be updated by one

thread at a time

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (2)

• Busy-waiting can be used for critical sections with

a flag variable and a while-loop

 It can be very wasteful of CPU cycles.

 It can also be unreliable if compiler optimization is

turned on.

• A mutex arrange for mutually exclusive access to a

critical section.

• A semaphore

 It is an unsigned int together with two operations:

sem_wait and sem_post.

 Semaphores are more powerful than mutexes since

they can be initialized to any nonnegative value.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (3)

• A barrier is a point in a program at which the threads

block until all of the threads have reached it.

• A read-write lock is used when it’s safe for multiple

threads to simultaneously read a data structure, but if a

thread needs to modify or write to the data structure,

then only that thread can access the data structure

during the modification.

• Some C functions cache data between calls by

declaring variables to be static, causing errors when

multiple threads call the function.

 This type of function is not thread-safe

Copyright © 2010, Elsevier

Inc. All rights Reserved

