
Tree Search for Travel Salesperson

Problem

Pacheco Text Book Chapt 6

T. Yang, UCSB CS140, Spring 2014

 Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• Tree search for travel salesman problem.

 Recursive code

 Nonrecusive code

• Parallelization with threads on a shared memory

machine

 Static partitioning

 Dynamic partitioning

• Parallelization with MPI

 Static partitioning

 Dynamic partitioning

• Data-intensive parallel programming with

MapReduce

Copyright © 2010, Elsevier

Inc. All rights Reserved

Tree search for TSP

• The NP-complete travelling salesperson problem:

find a minimum cost tour.

 A tour starts from a home town, visits each city

once, and returns the hometown (source)

 Also known as single-source shortest path problem

• 4-city TSP

Node->city

Edge->cost

Hometown =0

 Copyright © 2010, Elsevier

Inc. All rights Reserved

Search Tree for Four-City TSP

Copyright © 2010, Elsevier

Inc. All rights Reserved

Each tree path represents a partial tour from

Hometown source

Depth-first search

Copyright © 2010, Elsevier

Inc. All rights Reserved

1

2

3

4

6

5

7

8

Pseudo-code for a recursive solution to TSP

using depth-first search

Copyright © 2010, Elsevier

Inc. All rights Reserved

Find a solution.

Check if it is the

shortest found so far

For each neighbor,

recursively search

Recursive vs. nonrecursive design

• Recursion helps understanding of sequential code

 Not easy for parallelization.

• Non-recursive design

 Explicit management of stack data structure

 Loops instead of recursive calls

 Better for parallelization

– Expose the traversal of search tree explicitly.

– Allow scheduling of parallel threads (processes)

• Two solutions with code sample available from the

text book.

 Focus on the second solution

Copyright © 2010, Elsevier

Inc. All rights Reserved

Stack-based nonrecursive

code implementation

Pop a partial tour

[0] from stack

Push tour

[0,1] to stack
Push tour

[0,2]

Push

[0,3]

Stack-based nonrecursive

code implementation

Pop [0,1]

from stack

Push

[0,1,2]
Push

[0,1,3]

Pop

[0,2]

Push

[0,2,1]

Push

[0,2,3]

Non-recursive solution to TSP

(Text book Page 304. Program 6.6)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Fetch a partial tour

Update the best solution

if found

Expand the tour with each

of feasible cities

Push to stack

Run-Times of the Three Serial

Implementations of Tree Search

Copyright © 2010, Elsevier

Inc. All rights Reserved

(in seconds)

The digraph contains 15 cities.

All three versions visited

approximately 95,000,000 tree

nodes.

Parallel processing with threads

Thread 1 Thread 2 Thread 3

Generate enough partial tours

on the stack

Shared global variables

• Stack

 Every thread fetches partial tours from the stack,

expands, and pushes back to the stack.

• Best tour

 When a thread finishes a tour, it needs to check if it

has a better solution than recorded so far.

 There’s no contention among readers.

 If another thread is updating while we read, we may

see the old value or the new value.

– The new value is preferable, but to ensure this would be

more costly than it is worth.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Handling global variables

• Stack

 Generate enough partial tours for all threads

 Create private local stack per thread for each to

expand locally --- static partitioning

• Best tour

 During checkup, we let readers run without mutex

lock.

 When a thread starts to update the best tour

– Use a mutex lock to avoid race condition

– Double check if it is the best before real update.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Pthreads code of statically parallelized TSP

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global or local?

Global variable or local?

Global? Update global?

Pthreads code of statically parallelized TSP

Copyright © 2010, Elsevier

Inc. All rights Reserved

Stack grows locally

Partition workload using local stack

No mutex lock Mutex lock

Code for Update_best_tour()

void Update_best_tour(tour_t tour) {

 pthread_mutex_lock(&best_tour_mutex);

 if (Best_tour(tour)) {

 Copy_tour(tour, best_tour);

 Add_city(best_tour, home_town);

 }

 pthread_mutex_unlock(&best_tour_mutex);

}

Copyright © 2010, Elsevier

Inc. All rights Reserved

Double check if it is still

the best tour

First scenario

Copyright © 2010, Elsevier

Inc. All rights Reserved

global

tour value
process x process y

local

tour value

local

tour value 30

27 22

1. test 3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. update

9. unlock

27 22

Second scenario

Copyright © 2010, Elsevier

Inc. All rights Reserved

global

tour value
process x process y

local

tour value

local

tour value 30

27 29

1. test 3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. unlock

27

 Weakness of

static partitioning

• Load imbalance

 Many paths may be dynamically pruned

 The workload assigned to threads can be uneven.

• How to improve load balancing?

 Schedule computation statically initially.

 Shift workload dynamically when some threads have

nothing to do

– Also called work stealing

• Challenges/issues

 Idle threads wait for assignment. How to coordinate?

 Which thread shifts its workload to others

 When to terminate?

Solutions for the raised issues
• When to terminate?

 All threads are idle and there no more workload to

rebalance (all local stacks are empty)

• How can an idle thread get workload?

 Wait in a Pthread condition variable

 Wake up if somebody creates a new stack

• How to shift part of workload

 Workload is represented in the tour stack

 A busy thread can split part of its tours and create a

new stack (pointed by new_stack variable)

• When can a thread split its stack?

 At least two tours in its stack, there are threads

waiting, and the new_stack variable is NULL.

Dynamic work stealing code for thread my_rank

Partition_tree(my_rank, stack);

while (!Terminated(&stack, my_rank)) {

 curr_tour = Pop(stack);

 if (City_count(curr_tour) == n) {

 if (Best_tour(curr_tour)) Update_best_tour(curr_tour);

 } else {

 for (nbr = n-1; nbr >= 1; nbr--)

 if (Feasible(curr_tour, nbr)) {

 Add_city(curr_tour, nbr);

 Push_copy(stack, curr_tour, avail);

 Remove_last_city(curr_tour);

 } }}

 Code for Terminated()

• Return 1 (true)

 Means no threads are active and

the entire program should terminate.

• Return 0 (false)

 Means this thread should work.

– Either this thread has unfinished workload

 Check if this thread should split its workload and let

others work

 Namely if it has at least two tours in its stack

 and there are other threads waiting for some workload.

– Or this thread has no workload and others have.

 This thread can wait and fetch some workload from others.

Pseudo-Code for Terminated() Function

Copyright © 2010, Elsevier

Inc. All rights Reserved

I have work to do. Split my workload?

All threads are

idle. Terminate

Pseudo-Code for Terminated() Function (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Data structure for termination-

related variables

Copyright © 2010, Elsevier

Inc. All rights Reserved

Run-times of Pthreads tree search programs

Copyright © 2010, Elsevier

Inc. All rights Reserved

(in seconds)
numbers of times

stacks were split

Two 15-city problems.

~95 million tree nodes visited

Implementation of Tree Search

Using MPI and Static

Partitioning

Copyright © 2010, Elsevier

Inc. All rights Reserved

From thread code to MPI code with static

partitioning: Small code change

Process 0 Process 1 Process 2

Process 0: Generate enough

partial tours on the stack

Distribute initial tours to processes

Process 0 collects final best tour

How to check

and update the

best tour?

From thread code to MPI code

• Distribute initial partial tours to processes

 Use a loop of MPI_Send()

 Or use MPI_Scatterv() which supports non-uniform

message sizes to different destinations.

• Inform the best tour to all processes

 A process finds a new best tour if the new cost is lower.

 Donot use blocking group communication MPI_Bcast()

 Sender: May use MPI_Send() to inform others

– Safer to user MPI_Bsend() with its own buffer space.

 Receiver: Donot use blocking MPI_Recv().

– Use asynchronous non-blocking receiving with MPI_Iprobe

Sending a different number of objects to each

process in the communicator

Copyright © 2010, Elsevier

Inc. All rights Reserved

Gathering a different number of objects from

each process in the communicator

Copyright © 2010, Elsevier

Inc. All rights Reserved

Modes and Buffered Sends

• MPI provides four modes for sends.

 Standard: MPI_Send()

– Use system buffer. Block if there is no buffer space

 Synchronous: MPI_Ssend()

– Block until a matching receive is posted.

 Ready: MPI_Rsend()

– Error unless a matching receive is posted before sending

 Buffered: MPI_Bsend()

– Supply your own buffer space.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Asynchronous non-blocking receive

Copyright © 2010, Elsevier

Inc. All rights Reserved

Checking to see if a message is available

If a message is available, use standard

MPI_Recv() to receive it.

At the end of MPI tree search

• Gather and print the best tour at the end.

 Use MPI_Allreduce() to find the lowest from all.

 Process 0 prints the final result

• Clean unreceived messages before shutting down MPI

 Some messages won’t be received during parallel

search.

 Use MPI_Iprobe to receive outstanding messages

before MPI_Finalize()

Printing the best tour

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implementation of Tree Search

Using MPI and Dynamic

Partitioning

Copyright © 2010, Elsevier

Inc. All rights Reserved

From static to dynamic partitioning

• Use majority of MPI code for static partitioning

• Special handling of distributed termination

detection

 Emulate in a distributed memory setting

 Handle a process runs out of work (stack is empty)

– Request work from MyRank+1 first.

– Wait for receiving additional work

– Quit if no more work is available

 A process with work splits its stack and sends work

to an idle process.

– Use special MPI message packaging

Copyright © 2010, Elsevier

Inc. All rights Reserved

Send stack tour data structure with MPI

message packing

Copyright © 2010, Elsevier

Inc. All rights Reserved

Pack data into a buffer of contiguous memory

Unpacking data from a buffer of contiguous

memory

Copyright © 2010, Elsevier

Inc. All rights Reserved

Terminated() Function for MPI with Dynamically

Partitioned TSP (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

At most 1 tour, reject other

requests.

With extra work, split stack and

send to another process if needed

Notify everybody I am out of work

Terminated() Function for MPI with Dynamically

Partitioned TSP (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

No work here. Send a request to

others, wait for assigned work.

Quit if no more work available

Distributed Termination Detection: First Solution

• Each process maintains a variable (oow) as # of out-of-work

processes.

 The entire computation quits if oow = n where n is # of

processes.

• When a process runs out of work, notify everybody (oow++)

• When a process receives new workload, notify everybody

(oow--)

This algorithm fails with out-of-order receiving

 from different processes.

Copyright © 2010, Elsevier

Inc. All rights Reserved

oow -- # of out-of-work

processes.

oow=3, forcing Proc 0

quit before receiving

work from Proc 1

Distributed Termination Detection: Second Solution

• Use energy conservation as a guiding principle

• Each process has 1 unit of energy initially

• When a process runs out of work, send its energy to process

0.

 Process 0 adds this energy to its energy variable

• When a process splits its workload, divide its energy in half

and sending half to the process that receives work.

 Use precise rational addition to avoid underflow

Total energy in all processes =n during all steps.

The program terminates when process 0 finds its energy=n

Energy-based Termination Detection: Example

Total energy in all processes =3 during all steps.

Proc 0

Energy=1

Energy=2

Energy= 2 ½

Energy=3

Terminate

Proc 1

Energy=1

Out-of-work. Send energy

1 to Proc 0 Energy=0

Send work request to 2

Energy=1/2

Out-of-work. Energy=0

Proc 2

Energy=1

Split workload.

Energy=1/2

Out-of-work. Energy=0

Out-of-work

Energy=0

Performance of MPI and Pthreads

implementations of tree search

Copyright © 2010, Elsevier

Inc. All rights Reserved

(in seconds)

Source code from the text book

• Source code under chapter 6 directory:

 tsp_rec.c Recursive sequential code

 tsp_iter2.c Nonrecursive sequential code

 pth_tsp_stat.c Pthread code with static partitioning

 pth_tsp_dyn.c Pthread code with dynamic partitioning

 mpi_tsp_stat.c MPI code with static partitioning

 mpi_tsp_dyn.c MPI code with dynamic partitioning

Concluding Remarks

• In a distributed memory environment in which

processes send each other work, determining

when to terminate is a nontrivial problem.

• Review memory requirements and the amount of

communication during parallelization

 If memory required > memory per machine, then a

distributed memory program may be faster

 If there is considerable communication, a shared

memory program may be faster.

Copyright © 2010, Elsevier

Inc. All rights Reserved

