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Outline 

• Tree search for travel salesman problem. 

 Recursive code 

 Nonrecusive code 

• Parallelization with threads on a shared memory 

machine 

 Static partitioning 

 Dynamic partitioning 

• Parallelization with MPI 

 Static partitioning 

 Dynamic partitioning 

• Data-intensive parallel programming with 

MapReduce 
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Tree search for TSP 

• The NP-complete travelling salesperson problem: 

find a minimum cost tour. 

 A tour starts from a home town, visits each city 

once, and returns the hometown (source) 

 Also known as single-source shortest path problem 

  

• 4-city TSP 

Node->city 

Edge->cost 

Hometown =0 
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Search Tree for Four-City TSP 
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Each tree path represents a partial tour from 

Hometown source 



Depth-first search 
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Pseudo-code for a recursive solution to TSP 

using depth-first search 
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Find a solution. 

Check if it is the 

shortest found so far 

For each neighbor, 

recursively search 



Recursive vs. nonrecursive design 

• Recursion helps understanding of sequential code 

 Not easy for parallelization. 

• Non-recursive design 

 Explicit management of stack data structure 

 Loops instead of recursive calls 

 Better for parallelization 

– Expose the traversal of search tree explicitly. 

– Allow scheduling of parallel threads (processes) 

• Two solutions with code sample available from the 

text book. 

 Focus on the second solution 
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Stack-based nonrecursive 

code implementation 

Pop a partial tour 

[0] from stack 

Push tour 

[0,1] to stack 
Push tour 

[0,2] 

Push 

[0,3] 



Stack-based nonrecursive 

code implementation 

Pop [0,1] 

from stack 

Push 

[0,1,2] 
Push  

[0,1,3] 

Pop 

[0,2] 

Push 

[0,2,1] 

Push 

[0,2,3] 



Non-recursive solution to TSP 

(Text book Page 304. Program 6.6) 
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Fetch a partial tour 

Update the best solution  

if found 

Expand the tour with each 

of  feasible cities 

Push to stack 



Run-Times of the Three Serial 

Implementations of Tree Search 
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(in seconds) 

The digraph contains 15 cities.  

All three versions visited 

approximately 95,000,000 tree 

nodes. 



Parallel processing with threads 

Thread 1 Thread 2 Thread 3 

Generate enough partial tours 

on the stack 



Shared global variables 

• Stack 

 Every thread fetches partial tours from the stack, 

expands, and pushes back to the stack. 

• Best tour 

 When a thread finishes a tour, it needs to check if it 

has a better solution than recorded so far. 

 There’s no contention among readers. 

 If another thread is updating while we read, we may 

see the old value or the new value. 

– The new value is preferable, but to ensure this would be 

more costly than it is worth. 
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Handling global variables 

• Stack 

 Generate enough partial tours for all threads 

 Create private local stack per thread for each to 

expand locally  --- static partitioning 

• Best tour 

 During checkup, we let readers run without mutex 

lock. 

 When a thread starts to update the best tour 

– Use a mutex lock to avoid race condition 

– Double check if it is the best before real update. 
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Pthreads code of statically parallelized TSP 
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Global or local? 

Global variable or local? 

Global? Update global?  



Pthreads code of statically parallelized TSP 
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Stack grows locally 

Partition workload using local stack 

No mutex lock Mutex lock 



Code for Update_best_tour() 

 

void Update_best_tour(tour_t tour) { 

   pthread_mutex_lock(&best_tour_mutex); 

   if (Best_tour(tour)) { 

      Copy_tour(tour, best_tour); 

      Add_city(best_tour, home_town); 

   } 

   pthread_mutex_unlock(&best_tour_mutex); 

} 
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Double check if it is still 

the best tour 



First scenario 
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global 

tour value 
process x process y 

local 

tour value 

local 

tour value 30 

27 22 

1. test 3. test 

2. lock 

4. update 

5. unlock 

6. lock 

7. test again 

8. update 

9. unlock 

27 22 



Second scenario 
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global 

tour value 
process x process y 

local 

tour value 

local 

tour value 30 

27 29 

1. test 3. test 

2. lock 

4. update 

5. unlock 

6. lock 

7. test again 

8. unlock 

27 



 Weakness of  

static partitioning 

• Load imbalance 

 Many paths may be dynamically pruned 

 The workload assigned to threads can be uneven. 

• How to improve load balancing? 

 Schedule computation statically initially. 

 Shift workload dynamically when some threads have 

nothing to do 

– Also called work stealing 

• Challenges/issues 

 Idle threads wait for assignment. How to coordinate? 

 Which thread shifts its workload to others 

 When to terminate? 



Solutions for  the raised issues 
• When to terminate? 

 All threads are idle and there no more workload to 

rebalance (all local stacks are empty) 

• How can an idle thread get workload? 

 Wait in a Pthread condition variable 

 Wake up if somebody creates a new stack 

•  How to shift part of workload 

 Workload is represented in the tour stack 

 A busy thread can split part of its tours and create a 

new stack (pointed by new_stack variable) 

• When can a thread split its stack? 

 At least two tours in its stack, there are threads 

waiting,  and the new_stack variable is NULL. 



Dynamic work stealing code for thread my_rank 

Partition_tree(my_rank, stack); 

while (!Terminated(&stack, my_rank)) { 

        curr_tour = Pop(stack); 

        if (City_count(curr_tour) == n) { 

         if (Best_tour(curr_tour))  Update_best_tour(curr_tour); 

        } else { 

            for (nbr = n-1; nbr >= 1; nbr--) 

            if (Feasible(curr_tour, nbr)) { 

               Add_city(curr_tour, nbr); 

               Push_copy(stack, curr_tour, avail); 

               Remove_last_city(curr_tour); 

           } }} 



 Code for Terminated() 

• Return 1 (true) 

 Means no threads are active and 

the entire program should terminate. 

• Return 0  (false) 

 Means this thread should work. 

– Either this thread has unfinished workload 

 Check if this thread should split its workload and let 

others work 

 Namely if it has at least two tours in its stack  

  and there are other threads waiting for some workload. 

– Or this thread has no workload and others have.  

 This thread can wait and fetch some workload from others. 



Pseudo-Code for Terminated() Function 
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I have work to do. Split my workload? 

All threads are 

idle. Terminate 



Pseudo-Code for Terminated() Function (2) 
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Data structure for termination-

related variables 
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Run-times of Pthreads tree search programs 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 

(in seconds) 
numbers of times 

stacks were split 

Two 15-city problems. 

~95 million tree nodes visited 



Implementation of Tree Search 

Using MPI and Static 

Partitioning 
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From thread code to MPI code with static 

partitioning:  Small code change 

Process 0 Process 1 Process 2 

Process 0: Generate enough 

partial tours on the stack 

Distribute initial tours to processes 

Process 0 collects final best tour 

How to check 

and update the 

best tour? 



From thread code  to MPI code 

• Distribute initial partial tours to processes 

 Use a loop of MPI_Send() 

 Or use MPI_Scatterv()  which supports non-uniform 

message sizes to different destinations. 

• Inform the best tour to all processes 

 A process finds a new best tour if the new cost is lower. 

 Donot use  blocking group communication MPI_Bcast() 

 Sender: May use MPI_Send() to inform others 

– Safer to user MPI_Bsend() with its own buffer space. 

 Receiver: Donot use blocking MPI_Recv().  

– Use asynchronous non-blocking receiving with MPI_Iprobe 

 



Sending a different number of objects to each 

process in the communicator 
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Gathering a different number of objects from 

each process in the communicator 
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Modes and Buffered Sends 

• MPI provides four modes for sends. 

 Standard:  MPI_Send() 

– Use system buffer.  Block if there is no buffer space 

 Synchronous: MPI_Ssend() 

– Block until a matching receive is posted. 

 Ready: MPI_Rsend() 

– Error unless a matching receive is posted before sending 

 Buffered:  MPI_Bsend() 

– Supply your own buffer space. 
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Asynchronous non-blocking receive 
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Checking to see if a message is available 

If a message is available, use standard 

MPI_Recv() to receive it. 



At the end of MPI tree search 

• Gather and print the best tour at the end. 

 Use MPI_Allreduce() to find the lowest from all. 

 Process 0 prints the final result 

• Clean unreceived messages before shutting down MPI 

 Some messages won’t be received during parallel 

search. 

 Use MPI_Iprobe to receive outstanding messages 

before MPI_Finalize() 

 



Printing the best tour 
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Implementation of Tree Search 

Using MPI and Dynamic 

Partitioning 
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From static to dynamic partitioning 

• Use majority of MPI code  for static partitioning 

• Special handling of distributed termination 

detection  

 Emulate in a distributed memory setting 

 Handle a process runs out of work (stack is empty) 

– Request work from MyRank+1 first. 

– Wait for receiving additional work 

– Quit if no more work is available  

 A process with work splits its stack and sends work 

to an idle process. 

– Use  special MPI message packaging 
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Send stack tour data structure with MPI 

message packing  
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Pack data into a buffer of contiguous memory 



Unpacking data from a buffer of contiguous 

memory 
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Terminated() Function for MPI with Dynamically 

Partitioned TSP (1) 
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At most 1 tour,  reject other 

requests. 

With extra work, split stack and            

send to another process if needed 

Notify everybody I am out of work 



Terminated() Function for MPI with Dynamically 

Partitioned TSP (2) 
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No work here.  Send a request to 

others, wait for assigned work. 

Quit if no more work available 



Distributed Termination Detection: First Solution 

• Each process maintains a variable (oow) as # of out-of-work 

processes. 

 The entire computation quits if oow = n where n is # of 

processes. 

• When a process runs out of work, notify everybody (oow++) 

• When a process receives  new workload,  notify everybody 

(oow--) 

This algorithm fails with out-of-order receiving 

 from different processes. 
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oow -- # of out-of-work 

processes. 

oow=3, forcing Proc 0 

quit before receiving 

work from Proc 1 



Distributed Termination Detection: Second Solution 

• Use energy conservation as a guiding principle 

• Each process has 1 unit of energy initially 

• When a process runs out of work, send its energy to process 

0.  

 Process 0 adds this energy to its energy variable 

• When a process splits its workload,  divide its energy in half 

and sending half to the process that receives work. 

 Use precise rational addition to avoid underflow 

Total energy in all processes =n during all steps. 

The program terminates when process 0 finds its energy=n 



Energy-based  Termination Detection: Example 

Total energy in all processes =3 during all steps. 

Proc 0 

Energy=1 

 

 

 

Energy=2 

 

 

 

 

 

Energy= 2 ½ 

Energy=3 

Terminate 

 

Proc 1 

Energy=1 

 

Out-of-work. Send energy 

1 to Proc 0 Energy=0 

 

Send work request to 2 

 

Energy=1/2 

 

Out-of-work. Energy=0 

Proc 2 

Energy=1 

 

 

 

 

Split workload. 

Energy=1/2 

 

 

Out-of-work. Energy=0 

 

Out-of-work

Energy=0 



Performance of MPI and Pthreads 

implementations of tree search 
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(in seconds) 



Source code from the text book 

• Source code under chapter 6 directory: 

 tsp_rec.c    Recursive sequential code 

 tsp_iter2.c   Nonrecursive sequential code 

 pth_tsp_stat.c   Pthread code with static partitioning 

 pth_tsp_dyn.c   Pthread code with dynamic partitioning 

 mpi_tsp_stat.c  MPI code with static partitioning 

 mpi_tsp_dyn.c   MPI  code with dynamic partitioning  

 



Concluding Remarks 

• In  a distributed memory environment in which 

processes send each other work, determining 

when to terminate is a nontrivial problem. 

 

• Review  memory requirements and the amount of 

communication during parallelization 

 If  memory required > memory per machine, then a 

distributed memory program may be faster  

 If there is considerable communication, a shared 

memory program may be faster. 
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