CS170 1

N\
KI‘hread Manipulation and Synchronizatior-ill

Threads used in Nachos:

class Thread {
public:
Thread(char* debugName) ;
“Thread() ;
void Fork(void (*func)(int), int arg);
void Yield();
void Finish();

e The Thread constructor creates a new thread with
a data structure for the TCB (thread control
block).

e “Fork” gives a new thread a function to run.
It allocates a stack for the thread, sets up the TCB,

CS170 3

/ Problems with Concurrent Threads . \

Two threads increment the same variable “a”.

int a = 0;
void sum(int p) {
a = atl
printf("T%d : a = %d\n", p, a);
}
void main() {
Thread *t = new Thread("child");
t->Fork(sum, 1);
sum(0) ;

e The desired result: a is 2 after both threads finish.

e Possible results when execute concurrently:

TO : a=1 TO : a=2
then puts the thread on a thread ready queue. T1 : a=2 T1 : a=i
e Setup TCB: Fill the stack pointer. Set the PC to
be the first instruction in the function, set a TO : 1
\ register to the first parameter. / \ T1 : 1 j
CS, UCSB Tao Yang CS, UCSB Tao Yang
CS170 2 CS170 4

4 N

e The system maintains a thread ready queue.
Whenever a processor becomes idle, the scheduler
grabs a thread to run. Then system restores the
state from its TCB to run the selected function.

\ _/

CS, UCSB

Tao Yang

Atomic Operations & Mutual Exclusion'

e An atomic operation is one that executes without

any interference from other operations. i.e. it
executes as one unit.

e If “a=a+1” is an atomic operation, the final result
is guaranteed to be the same as if the operations
executed in some serial order.

e Use mutual exclusion to make operations atomic:

Only one thread is allowed to update “a” at a time

(called a mutual exclusion).

e The code that performs the atomic operation is
called a critical section.

e Use synchronization operations to implement

mutual exclusions.

\ _/

CS, UCSB

Tao Yang




CS170 5

Semaphore for synchronization'

A semaphore is a counter that support two atomic

operations, P and V.

The Semaphore interface from Nachos:

class Semaphore {

CS170 7

/ Semaphores for other problems' \

Semaphores can do more than mutual exclusion:

e.g. synchronize a producer/consumer or a pipe
problem.

Producer is generating data and the consumer is
consuming data. e.g. One person types a keyboard as a
producer and the Unix shell reads characters as a

public: consumer.
Semaphore(char* debugName, int initialValue)
- Semaphore *s;
Semaphore() ; . .
void PO): void consumer(int dummy) {
hil 1
void VO ; while (1) 4
} s->P();
consume the next unit of data
e Semphore(name, count) : creates a semaphore and }
initializes the counter to count. }
e P() : Atomically waits until the counter is greater void producer(int dummy) {
than 0, then decrements the counter and returns. while (1) {
produce the next unit of data
e V() : Atomically increments the counter. s>VO;
CS, UCSB Tao Yang CS, UCSB Tao Yang
Cs170 6 CS170 8

4 ™
The Sum example'

int a = 0;
Semaphore *s;
void sum(int p) {
int t;
s->PQ);
a=a+l;
t = a;
s>V ;
printf("%d : a = %d\n", p, t);
}
void main() {
Thread *t = new Thread("child");
s = new Semaphore("s", 1);
t—>Fork(sum, 1);
sum(0) ;
}

A semaphore is used to do mutual exclusion.

- _/

CS, UCSB Tao Yang

4 N

}

void main() {
s = new Semaphore("s", 0);
Thread *t = new Thread("consumer");
t->Fork(consumer, 1);
t = new Thread("producer");
t->Fork(producer, 1);

\ _/

CS, UCSB Tao Yang




CS170

/ Bounded Buffers .

Producer/consumer with a limited buffer.

e Consumer cannot run forever without data
provided by producer.

e Producer cannot run forever.

Semaphore *full;
Semaphore *empty;
void consumer(int dummy) {
while (1) {
data->P(); // wait for data
consume the next unit of data
space->V(); //release space
}
}
void producer(int dummy) {
while (1) {
space->P(); //wait for space
produce the next unit of data
data->V(); //more data

\}

~

CS, UCSB

Tao Yang

CS170 11

/ Other synchronization abstraction' \

Locks and Condition variables (e.g. provided in
POSIX Pthreads).

e Locks are an abstraction specifically for mutual
exclusion.
e The Nachos lock interface:
class Lock {
public:
Lock(char* debugName) ;
“Lock();
void Acquire();

void Release();

}

e A lock can be in one of two states: locked and
unlocked.
e Semantics of atomic lock operations:

— Lock(name) : creates a free lock with the
unlocked state.

\ — Acquire() : Atomically waits until the lock statej

CS, UCSB Tao Yang

CS170

10

-

}

void main() {
space = new Semaphore("space", N);
data = new Semaphore("data", 0);
Thread *t = new Thread("consumer");
t->Fork(consumer, 1);
t = new Thread("producer");
t->Fork(producer, 1);

.

CS, UCSB

Tao Yang

CS170 12

4 N

is unlocked, then sets the lock state to locked.
— Release() : Atomically changes the lock state to
unlocked from locked.

How to use locks

e Typically associate a lock with pieces of data that
multiple threads access.

e When one thread wants to access a piece of data, it
first acquires the lock. It then performs the access,
then unlocks the lock.

e Lock allows threads to perform complicated atomic
operations on each piece of data.

\ _/

CS, UCSB Tao Yang




CS170

13

CS170

15

/ Condition variables.

The Nachos interface:

class Condition {
public:

~

Requirements for lock implementation'

e Safty, or called mutual exclusion. Only one
thread can acquire lock at a time.

e Progress. If multiple threads try to acquire an
unlocked lock, one of the threads will get it.

e Bouned waiting. Lock acquiring completes in

finite time.

- _/

CS, UCSB

Tao Yang

}

.

Semantics of condition variable operations:

Condition(char* debugName) ;
~“Condition();

void Wait(Lock *conditionLock);
void Signal(Lock *conditionLock);

void Broadcast(Lock *conditionLock);

Condition(name) : creates a condition variable.

Wait(Lock *1) : Atomically releases the lock and
waits. When Wait() returns the lock is reacquired.

Signal(Lock *1) : Enables one waiting thread to
run. When Signal returns, lock is still acquired.

Broadcast(Lock *1) : Enables all waiting threads to
run. When Broadcast returns, the lock is still

acquired. /

CS, UCSB

Tao Yang

CS170 14

4 N

The need for condition varilables'

If we use locks for unbounded buffer:

e if a consumer wants to consume before the

producer produces data, it must wait

e Thus consumder needs to acquire a lock, and then
check if something can be consumed.

e Consumer does not know when data is available.
Thus it must loop, checking again and again until
the data is ready.

This is bad because it wastes CPU resources.

\ _/

CS, UCSB

Tao Yang

CS170

16

-

.

~

How to use condition variables'

Associate a lock and a condition variable with a
data structure.

Before the program performs an operation on the
data structure, it acquires the lock.

If it has to wait (condition is not satisfied), it uses
the condition variable to wait until it can perform
the operation.

In some cases you may need more than one

condition variable.

A programming abstraction, which automatically
associates locks and condition variables with data,
is called a monitor.

A monitor is a data structure plus a set of
operations. The monitor also has a lock and,
optionally, one or more condition variables. See

OSC Section 6.7.

/

CS, UCSB

Tao Yang




CS170 17

N
/Condition variables for unbounded buﬂ"er'

Lock *1;

Condition *c;

int avail = 0;
void consumer(int dummy) {
while (1) {
1->Acquire();
if (avail == 0) {
c—>Wait(1);
}
consume the next unit of data
avail--;
1->Release();

void producer(int dummy) {
while (1) {
1->Acquire();
produce the next unit of data

\ avail++; j

CS, UCSB Tao Yang

CS170 19

/ Two variants of condition Variables.\

e Hoare condition variables. When One thread

performs a Signal, the very next thread to run is
the waiting thread.

e Mesa condition variables. Other threads that
acquire the lock can execute between the signaller
and the waiter.

The example above will work with Hoare condition
variables but not with Mesa condition variables.

Put while’s around condition variables:

void consumer(int dummy) {
while (1) {

1->Acquire();

while (avail == 0) {
c->Wait (1) ;

}

consume the next unit of data

avail--;

1->Release();

N /

CS, UCSB Tao Yang

CS170 18

4 N

c->Signal(1);
1->Release();

}

void main() {
1 new Lock("1");

¢ = new Condition("c");

Thread *t = new Thread("consumer");
t->Fork(consumer, 1);

Thread *t = new Thread("consumer");
t->Fork(consumer, 2);

t = new Thread("producer");
t->Fork(producer, 1);

- _/

CS, UCSB Tao Yang

CS170 20

4 N

Laundromat Example I

e N laundry machines, numbered 1 to N.

e P allocation stations.
When you want to wash, go to an allocation
station and put in your coins. The allocation

station gives you a machine number that you use.

o P deallocation stations.

When your clothes finish, you give the number
back to one of the deallocation stations, and

someone else can use the machine.

\ _/

CS, UCSB Tao Yang




CS170 21

/ Laundromat code: alpha release'

allocate(int dummy) {
while (1) {
wait for coins from user
n = get();
give number n to user

}
}
deallocate(int dummy) {
while (1) {
wait for number n from user
put(n);
}
}
main() {
for (i = 0; i < P; i++) {
t = new Thread("allocate");
t->Fork(allocate, 0);
t = new Thread("deallocate");
t->Fork(deallocate, 0);

CS, UCSB Tao Yang

CS170 23

/ Lock for concurrent access' \

Two people may be assigned to the same machine.

int al[N];
Lock *1;
int get() {
1->Acquire();
for (i = 0; 1 < N; i++) {
if (al[i]l == 0) {
ali]l = 1;
1->Release();
return(i+1);

}
1->Release();

}

void put(int i) {
1->Acquire();
ali-1] = 0;
1->Release();

N /

N /

CS, UCSB Tao Yang

CS170 22

4 N

Code for get() and put()'

Use an array data structure a to keep track of which

machines are in use and which are free.

int al[N];
int get() {
for (i = 0; i < N; i++) {
if (alil == 0) {
alil = 1;

return(i+1);

}
void put(int i) {
afi-1] = 0;

\ _/

CS, UCSB Tao Yang

CS170 24

/ Condition variables for waiting' \

If someone waits when all machines are taken:

int al[N]; Lock *L; Condition *c;
int get() {
L->Acquire();
while (1) {
for (i = 0; i < N; i++) {
if (ali]l == 0) {
alil = 1;
L->Release();

return(i+1);

}
c->Wait (L) ;
3
void put(int i) {
L->Acquire();
ali-1] = 0;
c->Signal();
L->Release();
\ /

CS, UCSB Tao Yang




CS170 25

/ When to use broadcast() I \

Whenever want to wake up all waiting threads.

Example: a broadcast for allocation/deallocation of
variable sized units. e.g. concurrent malloc/free.

Lock *L; Condition *c;
char *malloc(int s) {
L->Acquire();
while (cannot allocate a chunk of size s) {
c—>Wait (L) ;
}
allocate chunk of size s;
L->Release();
return pointer to allocated chunk
}
void free(char *m) {
L->Acquire();
deallocate m.
c->Broadcast(1);
L->Release();

N J

CS, UCSB Tao Yang

CS170 27

/ Deadlock: Example I

Lock *11, *12;
void p(O {
11->Acquire();
12->Acquire();
Manipulate data that 11/12 protect;
12->Release();
11->Release();
}
void qO {
12->Acquire();
11->Acquire();
Manipulate data that 11/12 protect;
11->Release();
12->Release() ;}

If p and q execute concurrently, they may wait forever
(called deadlock).

e First, p acquires 11 and q acquires 12.
e Then, p waits to acquire 12 and q waits to acquire

\ 11. /

CS, UCSB Tao Yang

CS170 26

Example with malloc/free I

Initially start out with 10 bytes free.

m() — malloc() f — free()

Process 1 Process 2 Process 3

m(10) - succ m(5) - suspend m(5)-suspend
gets lock - wait
gets lock - wait
f(10) - broadcast
resume m(5)-succ
resume m(5)-succ
m(7) - wait
m(3) - wait
f(5) - broadcast

resume m(7)-wait

resume m(3)-succ

- _/

CS, UCSB Tao Yang

CS170 28

Conditions for deadlock.

Deadlock if the following conditions are true:

e Mutual Exclusion: Only one thread can hold
lock at a time.

e Hold and Wait: At least one thread holds a lock
and is waiting for another process to release a lock.

e No preemption: Only the process holding the
lock can release it.

e Circular Wait: There is a set tq,...,t, such that
t1 is waiting for a lock held by ts, ..., t,, is waiting
for a lock held by t;.

How to avoid such a deadlock?

e Order the locks, and always acquire the locks in
that order.

e Eliminates the circular wait condition.

\ _/

CS, UCSB Tao Yang




