
Parallel Programming with
Hadoop/MapReduce

CS 240A, Tao Yang, Winter 2013

© Spinnaker Labs, Inc.

Overview

•What is MapReduce?

•Related technologies

–Hadoop/Google file system

•MapReduce applications

Motivations

• Motivations

– Large-scale data processing on clusters

– Massively parallel (hundreds or thousands of CPUs)

– Reliable execution with easy data access

• Functions

– Automatic parallelization & distribution

– Fault-tolerance

– Status and monitoring tools

– A clean abstraction for programmers

» Functional programming meets distributed computing

» A batch data processing system

Parallel Data Processing in a Cluster

• Scalability to large data volumes:

– Scan 1000 TB on 1 node @ 100 MB/s = 24 days

– Scan on 1000-node cluster = 35 minutes

• Cost-efficiency:

– Commodity nodes /network

» Cheap, but not high bandwidth, sometime unreliable

– Automatic fault-tolerance (fewer admins)

– Easy to use (fewer programmers)

Typical Hadoop Cluster

• 40 nodes/rack, 1000-4000 nodes in cluster

• 1 Gbps bandwidth in rack, 8 Gbps out of rack

• Node specs :
8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch

Layered Network Architecture in
Conventional Data Centers

• A layered example from Cisco: core, aggregation,
the edge or top-of-rack switch.

• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html

MapReduce Programming Model

• Inspired from map and reduce operations commonly
used in functional programming languages like Lisp.

• Have multiple map tasks and reduce tasks

• Users implement interface of two primary methods:

– Map: (key1, val1) → (key2, val2)

– Reduce: (key2, [val2]) → [val3]

Example: Map Processing in Hadoop

• Given a file

– A file may be divided into multiple parts (splits).

• Each record (line) is processed by a Map function,

– written by the user,

– takes an input key/value pair

– produces a set of intermediate key/value pairs.

– e.g. (doc—id, doc-content)

• Draw an analogy to SQL group-by clause

© Spinnaker Labs, Inc.

map (in_key, in_value) ->

 (out_key, intermediate_value) list

map

Processing of Reducer Tasks

• Given a set of (key, value) records produced by map tasks.

– all the intermediate values for a given output key are
combined together into a list and given to a reducer.

– Each reducer further performs (key2, [val2]) → [val3]

• Can be visualized as aggregate function (e.g., average) that
is computed over all the rows with the same group-by
attribute.

© Spinnaker Labs, Inc.

Reduce

reduce (out_key, intermediate_value list) ->

 out_value list

Put Map and Reduce Tasks Together

Example: Word counting

Divide collection of
document among the class.

Each person gives count of
individual word in a

document. Repeats for
assigned quota of documents.

(Done w/o communication)

Sum up the counts from all
the documents to give final

answer.

• ”Consider the problem of counting the number of occurrences of
each word in a large collection of documents”

Word Count Execution

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

From Matei Zaharia’s slide

Pseudo-code

map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

 result = result + ParseInt(v);

Emit(AsString(result));

© Spinnaker Labs, Inc.

MapReduce WordCount.java
 Hadoop distribution: src/examples/org/apache/hadoop/examples/WordCount.java

 public static class TokenizerMapper

 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 }

© Spinnaker Labs, Inc.

MapReduce WordCount.java

map() gets a key, value, and context

• key - "bytes from the beginning of the line?“

• value - the current line;

in the while loop, each token is a "word" from the current line

US history book

School admission records

iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value tokens

US history book

© Spinnaker Labs, Inc.

Reduce code in WordCount.java

public static class IntSumReducer

 extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context

) throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

© Spinnaker Labs, Inc.

The driver to set things up and start

// Usage: wordcount <in> <out>

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

 Job job = new Job(conf, "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setCombinerClass(IntSumReducer.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

Systems Support for MapReduce

User App

MapReduce

Distributed File Systems (Hadoop,
Google)

© Spinnaker Labs, Inc.

Distributed Filesystems

• The interface is the same as a single-machine file system

– create(), open(), read(), write(), close()

• Distribute file data to a number of machines (storage units).

– Support replication

• Support concurrent data access

– Fetch content from remote servers. Local caching

• Different implementations sit in different places on
complexity/feature scale

– Google file system and Hadoop HDFS

» Highly scalable for large data-intensive applications.

» Provides redundant storage of massive amounts of data
on cheap and unreliable computers

© Spinnaker Labs, Inc.

Assumptions of GFS/Hadoop DFS

• High component failure rates

– Inexpensive commodity components fail all the time

• “Modest” number of HUGE files

– Just a few million

– Each is 100MB or larger; multi-GB files typical

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads

• High sustained throughput favored over low latency

Client

Client

Misc. servers

Client

R
e
p

li
c
a
s

Masters

GFS Master

GFS Master

C0 C1

C C5

Chunkserver 1

C0

C

C5

Chunkserver N

C1

C C5

Chunkserver 2

…

• Files are broken into chunks (typically 64 MB) and serve in chunk servers

• Master manages metadata, but clients may cache meta data obtained.

• Data transfers happen directly between clients/chunk-servers

• Reliability through replication

Each chunk replicated across 3+ chunk-servers

GFS Design

Hadoop Distributed File System

• Files split into 128MB blocks

• Blocks replicated across
several datanodes (often 3)

• Namenode stores metadata
(file names, locations, etc)

• Optimized for large files,
sequential reads

• Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Hadoop DFS

GFS Client Block Diagram

GFS-Aware Application

POSIX API GFS API

Regular VFS with local and

NFS-supported files
Separate GFS view

Network stack

GFS Master

GFS Chunkserver

GFS Chunkserver

Specific drivers...

Client computer

• Provide both POSIX standard file interface, and costumed API

• Can cache meta data for direct client-chunk server access

Read/write access flow in GFS

Hadoop DFS with MapReduce

MapReduce: Execution overview

Reducers output the result on stable storage.

Shuffle phase assigns reducers to these buffers, which are remotely read
and processed by reducers.

Map task reads the allocated data, saves the map results in local buffer.

Master Server distributes M map tasks to machines and monitors their
progress.

Execute MapReduce on a cluster of machines with
Hadoop DFS

MapReduce in Parallel: Example

© 2010, Jamie Callan 32

MapReduce: Execution Details

• Input reader

– Divide input into splits, assign each split to a Map task

• Map task

– Apply the Map function to each record in the split

– Each Map function returns a list of (key, value) pairs

• Shuffle/Partition and Sort

– Shuffle distributes sorting & aggregation to many reducers

– All records for key k are directed to the same reduce processor

– Sort groups the same keys together, and prepares for aggregation

• Reduce task

– Apply the Reduce function to each key

– The result of the Reduce function is a list of (key, value) pairs

MapReduce with data shuffling& sorting

© 2010, Le Zhao 33

Tom White, Hadoop: The Definitive Guide

MapReduce: Runtime Environment &Hadoop

Partitioning the input data.
Scheduling program across cluster of
machines, Locality Optimization and

Load balancing

Dealing with machine failure
Managing Inter-Machine

communication

MapReduce Runtime
Environment

Hadoop Cluster with MapReduce

MapReduce: Fault Tolerance

• Handled via re-execution of tasks.

 Task completion committed through master

• Mappers save outputs to local disk before serving to reducers

– Allows recovery if a reducer crashes

– Allows running more reducers than # of nodes

•If a task crashes:

– Retry on another node

» OK for a map because it had no dependencies

» OK for reduce because map outputs are on disk

– If the same task repeatedly fails, fail the job or ignore that input block

– : For the fault tolerance to work, user tasks must be deterministic and side-
effect-free

2. If a node crashes:

– Relaunch its current tasks on other nodes

– Relaunch any maps the node previously ran

» Necessary because their output files were lost along with the crashed node

MapReduce:
Locality Optimization

• Leverage the distributed file system to schedule a map
task on a machine that contains a replica of the
corresponding input data.

• Thousands of machines read input at local disk speed

• Without this, rack switches limit read rate

MapReduce: Redundant Execution

• Slow workers are source of bottleneck, may delay
completion time.

• Near end of phase, spawn backup tasks, one to finish
first wins.

• Effectively utilizes computing power, reducing job
completion time by a factor.

MapReduce:
 Skipping Bad Records

• Map/Reduce functions sometimes fail for particular
inputs.

• Fixing the Bug might not be possible : Third Party
Libraries.

• On Error

– Worker sends signal to Master

– If multiple error on same record, skip record

MapReduce:
 Miscellaneous Refinements

• Combiner function at a map task

• Sorting Guarantees within each reduce partition.

• Local execution for debugging/testing

• User-defined counters

© Spinnaker Labs, Inc.

Combining Phase

• Run on map machines after map phase

• “Mini-reduce,” only on local map output

• Used to save bandwidth before sending data to
full reduce tasks

• Reduce tasks can be combiner if commutative
& associative

© Spinnaker Labs, Inc.

Combiner, graphically

Combiner

replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Examples of MapReduce Usage in Web Applications

• Distributed Grep.

• Count of URL Access
Frequency.

• Clustering (K-means)

• Graph Algorithms.

• Indexing Systems

MapReduce Programs In
Google Source Tree

Hadoop and Tools

• Various Linux Hadoop clusters around

– Cluster +Hadoop

» http://hadoop.apache.org

– Amazon EC2

• Winows and other platforms

– The NetBeans plugin simulates Hadoop

– The workflow view works on Windows

• Hadoop-based tools

– For Developing in Java, NetBeans plugin

• Pig Latin, a SQL-like high level data processing script language

• Hive, Data warehouse, SQL

• Mahout, Machine Learning algorithms on Hadoop

• HBase, Distributed data store as a large table

44

More MapReduce Applications

• Map Only processing

• Filtering and accumulation

• Database join

• Reversing graph edges

• Producing inverted index for web search

• PageRank graph processing

45

MapReduce Use Case 1: Map Only

Data distributive tasks – Map Only

• E.g. classify individual documents

• Map does everything

– Input: (docno, doc_content), …

– Output: (docno, [class, class, …]), …

• No reduce tasks

46

MapReduce Use Case 2: Filtering and
Accumulation

Filtering & Accumulation – Map and Reduce

• E.g. Counting total enrollments of two given student classes

• Map selects records and outputs initial counts

– In: (Jamie, 11741), (Tom, 11493), …

– Out: (11741, 1), (11493, 1), …

• Shuffle/Partition by class_id

• Sort

– In: (11741, 1), (11493, 1), (11741, 1), …

– Out: (11493, 1), …, (11741, 1), (11741, 1), …

• Reduce accumulates counts

– In: (11493, [1, 1, …]), (11741, [1, 1, …])

– Sum and Output: (11493, 16), (11741, 35)
47

MapReduce Use Case 3: Database Join
• A JOIN is a means for combining fields from two tables by using

values common to each.

• Example :For each employee, find the department he works in

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

 JOIN

Pred:

EMPLOYEE.DepID=

DEPARTMENT.DepID

JOIN RESULT

LastName DepartmentName

Rafferty Sales

Jones Engineering

Steinberg Engineering

… …

MapReduce Use Case 3 – Database Join

Problem: Massive lookups

– Given two large lists: (URL, ID) and (URL, doc_content) pairs

– Produce (URL, ID, doc_content) or (ID, doc_content)

Solution:

• Input stream: both (URL, ID) and (URL, doc_content) lists

– (http://del.icio.us/post, 0), (http://digg.com/submit, 1), …

– (http://del.icio.us/post, <html0>), (http://digg.com/submit, <html1>), …

• Map simply passes input along,

• Shuffle and Sort on URL (group ID & doc_content for the same URL together)

– Out: (http://del.icio.us/post, 0), (http://del.icio.us/post, <html0>),
(http://digg.com/submit, <html1>), (http://digg.com/submit, 1), …

• Reduce outputs result stream of (ID, doc_content) pairs

– In: (http://del.icio.us/post, [0, html0]), (http://digg.com/submit, [html1, 1]), …

– Out: (0, <html0>), (1, <html1>), …

49

MapReduce Use Case 4: Reverse graph edge
directions & output in node order

• Input example: adjacency list of graph (3 nodes and 4 edges)

(3, [1, 2]) (1, [3])

(1, [2, 3])  (2, [1, 3])

 (3, [1])

• node_ids in the output values are also sorted.
But Hadoop only sorts on keys!

• MapReduce format

– Input: (3, [1, 2]), (1, [2, 3]).

– Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse edge
direction)

– Out: (1,[3]) (2, [1, 3]) (3, [[1]).

1 2

3

1 2

3



50

MapReduce Use Case 5: Inverted Indexing
Preliminaries

Construction of inverted lists for document
search

• Input: documents: (docid, [term, term..]),
(docid, [term, ..]), ..

• Output: (term, [docid, docid, …])

– E.g., (apple, [1, 23, 49, 127, …])

A document id is an internal document id, e.g.,
a unique integer

• Not an external document id such as a url

© 2010, Jamie Callan 51

Using MapReduce to Construct Indexes:
A Simple Approach

A simple approach to creating inverted lists

• Each Map task is a document parser

– Input: A stream of documents

– Output: A stream of (term, docid) tuples

» (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) …

» We may create internal IDs for words.

• Shuffle sorts tuples by key and routes tuples to Reducers

• Reducers convert streams of keys into streams of inverted lists

– Input: (long, 1) (long, 127) (long, 49) (long, 23) …

– The reducer sorts the values for a key and builds an inverted list

– Output: (long, [df:492, docids:1, 23, 49, 127, …])

© 2010, Jamie Callan 52

Inverted Index: Data flow

This page contains

so much text

My page contains

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output

Processing Flow Optimization

A more detailed analysis of processing flow

• Map: (docid1, content1)  (t1, docid1) (t2, docid1) …

• Shuffle by t, prepared for map-reducer communication

• Sort by t, conducted in a reducer machine

 (t5, docid1) (t4, docid3) …  (t4, docid3) (t4, docid1) (t5, docid1) …

• Reduce: (t4, [docid3 docid1 …])  (t, ilist)

docid: a unique integer

t: a term, e.g., “apple”

ilist: a complete inverted list

but a) inefficient, b) docids are sorted in reducers, and c) assumes
ilist of a word fits in memory

© 2010, Jamie Callan 54

Using Combine () to Reduce Communication

• Map: (docid1, content1)  (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) …

– Each output inverted list covers just one document

• Combine locally

Sort by t

Combine: (t1 [ilist1,2 ilist1,3 ilist1,1 …])  (t1, ilist1,27)

– Each output inverted list covers a sequence of documents

• Shuffle by t

• Sort by t

(t4, ilist4,1) (t5, ilist5,3) …  (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) …

• Reduce: (t7, [ilist7,2, ilist3,1, ilist7,4, …])  (t7, ilistfinal)

ilisti,j: the j’th inverted list fragment for term i

© 2010, Jamie Callan 55

© 2010, Jamie Callan 56 56

Using MapReduce to Construct Indexes

Parser /

Indexer

Parser /

Indexer

Parser /

Indexer

:

:

:

:

:

:

Merger

Merger

Merger

:

:

A-F

Documents

Inverted

Lists

Map/Combine

Inverted List

Fragments

Shuffle/Sort Reduce

G-P

Q-Z

Construct Partitioned Indexes

• Useful when the document list of a term does not fit
memory

• Map: (docid1, content1)  ([p, t1], ilist1,1)

• Combine to sort and group values

 ([p, t1] [ilist1,2 ilist1,3 ilist1,1 …])  ([p, t1], ilist1,27)

• Shuffle by p

• Sort values by [p, t]

• Reduce: ([p, t7], [ilist7,2, ilist7,1, ilist7,4, …])  ([p, t7],
ilistfinal)

p: partition (shard) id

© 2010, Jamie Callan 57

© 2010, Jamie Callan 58 58

Generate Partitioned Index

Parser /

Indexer

Parser /

Indexer

Parser /

Indexer

:

:

:

:

:

:

Merger

Merger

Merger

:

:

Partition

Documents

Inverted

Lists

Map/Combine

Inverted List

Fragments

Shuffle/Sort Reduce

Partition

Partition

MapReduce Use Case 6: PageRank

PageRank

 Model page reputation on the web

 i=1,n lists all parents of page x.

 PR(x) is the page rank of each page.

 C(t) is the out-degree of t.

 d is a damping factor .





n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

0.4

0.4

0.2

0.2

0.2

0.2

0.4

Computing PageRank Iteratively

Start with seed
PageRank values

Each page distributes
PageRank “credit” to
all pages it points to.

Each target page adds up
“credit” from multiple in-

bound links to compute PRi+1

 Effects at each iteration is local. i+1th iteration depends only on ith

iteration

 At iteration i, PageRank for individual nodes can be computed
independently

 PageRank using MapReduce

Map: distribute PageRank “credit” to link targets

Reduce: gather up PageRank “credit” from
multiple sources to compute new PageRank value

Iterate until
convergence

Source of Image: Lin 2008

PageRank Calculation:
Preliminaries

One PageRank iteration:

• Input:

– (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..])
..

• Output:

– (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22,
..]) ..

MapReduce elements

• Score distribution and accumulation

• Database join

© 2010, Jamie Callan 63

PageRank:
Score Distribution and Accumulation

• Map

– In: (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21,
out22, ..]) ..

– Out: (out11, score1
(t)/n1), (out12, score1

(t)/n1) .., (out21,
score2

(t)/n2), ..

• Shuffle & Sort by node_id

– In: (id2, score1), (id1, score2), (id1, score1), ..

– Out: (id1, score1), (id1, score2), .., (id2, score1), ..

• Reduce

– In: (id1, [score1, score2, ..]), (id2, [score1, ..]), ..

– Out: (id1, score1
(t+1)), (id2, score2

(t+1)), ..
© 2010, Jamie Callan 64

PageRank:
Database Join to associate outlinks with score

• Map

– In & Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .., (id1, [out11,
out12, ..]), (id2, [out21, out22, ..]) ..

• Shuffle & Sort by node_id

– Out: (id1, score1
(t+1)), (id1, [out11, out12, ..]), (id2, [out21,

out22, ..]), (id2, score2
(t+1)), ..

• Reduce

– In: (id1, [score1
(t+1), out11, out12, ..]), (id2, [out21, out22, ..,

score2
(t+1)]), ..

– Out: (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1),
out21, out22, ..]) ..

65

Conclusions

• MapReduce advantages

• Application cases

– Map only: for totally distributive computation

– Map+Reduce: for filtering & aggregation

– Database join: for massive dictionary lookups

– Secondary sort: for sorting on values

– Inverted indexing: combiner, complex keys

– PageRank: side effect files

© 2010, Jamie Callan 66

© 2010, Jamie Callan 67

For More Information

• J. Dean and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” Proceedings of the 6th
Symposium on Operating System Design and Implementation
(OSDI 2004), pages 137-150. 2004.

• S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File
System.” OSDI 200?

• http://hadoop.apache.org/common/docs/current/mapred_tutori
al.html. “Map/Reduce Tutorial”. Fetched January 21, 2010.

• Tom White. Hadoop: The Definitive Guide. O'Reilly Media.
June 5, 2009

• http://developer.yahoo.com/hadoop/tutorial/module4.html

• J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce, Book Draft. February 7, 2010.

