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Overview 

•What is MapReduce? 

•Related technologies 

–Hadoop/Google file system 

•MapReduce applications 



Motivations 

• Motivations  

– Large-scale data processing on clusters 

– Massively parallel (hundreds or thousands of CPUs) 

– Reliable execution with easy data access 

• Functions 

– Automatic parallelization & distribution 

– Fault-tolerance 

– Status and monitoring tools 

– A clean abstraction for programmers 

» Functional programming meets distributed computing 

» A batch data processing system 

 



Parallel Data Processing in a Cluster 

• Scalability to large data volumes: 

– Scan 1000 TB on 1 node @ 100 MB/s = 24 days 

– Scan on 1000-node cluster = 35 minutes 

 

• Cost-efficiency: 

– Commodity nodes /network  

» Cheap, but not high bandwidth, sometime unreliable 

– Automatic fault-tolerance (fewer admins) 

– Easy to use (fewer programmers) 



Typical Hadoop Cluster 

• 40 nodes/rack, 1000-4000 nodes in cluster 

• 1 Gbps bandwidth in rack, 8 Gbps out of rack 

• Node specs : 
8-16 cores, 32 GB RAM, 8×1.5 TB disks 

Aggregation switch 

Rack switch 



Layered Network Architecture in 
Conventional Data Centers 

• A layered example from Cisco: core, aggregation,  
the edge or top-of-rack switch. 

• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html 



MapReduce Programming Model 

   

• Inspired from map and reduce operations commonly 
used in functional programming languages like Lisp. 

 

• Have multiple map tasks and reduce tasks 

 

• Users implement interface of two primary methods: 

– Map: (key1, val1) → (key2, val2) 

– Reduce: (key2, [val2]) → [val3] 

 

   

 

 



Example: Map Processing in Hadoop 

   

• Given a file  

– A file may be divided into multiple parts (splits). 

• Each record (line) is processed by a Map function, 

– written by the user,  

– takes an input key/value  pair  

– produces a set of intermediate key/value pairs.  

– e.g. (doc—id, doc-content) 

• Draw an analogy to SQL group-by clause 
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map  (in_key, in_value) ->  

 (out_key, intermediate_value) list 

map 



Processing of Reducer Tasks 

   

• Given a set of (key, value) records produced by map tasks. 

– all the intermediate values for a given output key are 
combined together into a list and given to a reducer. 

– Each reducer  further performs (key2, [val2]) → [val3] 

 

 

• Can be visualized as aggregate function (e.g., average) that 
is computed over all the rows with the same group-by 
attribute. 
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Reduce 

reduce (out_key, intermediate_value list) -> 

  out_value list 



Put Map and Reduce Tasks Together 

   

 

 

 

 

 

 



Example: Word counting 

Divide collection of 
document among the class. 

Each person gives count of 
individual word in a 

document. Repeats for 
assigned quota of documents. 

(Done w/o communication ) 

Sum up the counts from all 
the documents to give final 

answer. 

   

• ”Consider the problem of counting the number of occurrences of 
each word in a large collection of documents” 

 

 

 

 

 

 

 

 



Word Count Execution 

the 
quick 
brown 

fox 

the fox 
ate the 
mouse 

how 
now 

brown 
cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 
fox, 2 
how, 1 
now, 1 
the, 3 

ate, 1 
cow, 1 

mouse, 1 
quick, 1 

the, 1 
brown, 1 

fox, 1 

quick, 1 

the, 1 
fox, 1 
the, 1 
ate,1 

mouse,1 

how, 1 
now, 1 

brown, 1 
cow,1 

brown, 1 

brown, 1 

Input Map Shuffle & Sort Reduce Output 

From Matei Zaharia’s slide 

 



Pseudo-code 

map(String input_key, String input_value):  

// input_key: document name  

// input_value: document contents  

for each word w in input_value:  

 EmitIntermediate(w, "1");  

 

reduce(String output_key, Iterator intermediate_values):  

// output_key: a word  

// output_values: a list of counts  

int result = 0;  

for each v in intermediate_values:  

 result  = result + ParseInt(v);  

Emit(AsString(result)); 
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MapReduce WordCount.java 
 Hadoop distribution: src/examples/org/apache/hadoop/examples/WordCount.java 

 public static class TokenizerMapper 

       extends Mapper<Object, Text, Text, IntWritable>{ 

 

    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

 

    public void map(Object key, Text value, Context context 

                    ) throws IOException, InterruptedException { 

      StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens()) { 

          word.set(itr.nextToken()); 

         context.write(word, one); 

      } 

    } 

  } 
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MapReduce WordCount.java 

map() gets a key, value, and context 

• key - "bytes from the beginning of the line?“ 

• value - the current line; 

in the while loop, each token is a "word" from the current line 

US history book 

School admission records 

iPADs sold in 2012 

 

US history book 

School admission records 

iPADs sold in 2012 

Input file 
Line value tokens 

US    history book 
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Reduce code in WordCount.java 

public static class IntSumReducer 

       extends Reducer<Text,IntWritable,Text,IntWritable> { 

    private IntWritable result = new IntWritable(); 

 

    public void reduce(Text key, Iterable<IntWritable> values, 

                       Context context 

                       ) throws IOException, InterruptedException { 

      int sum = 0; 

      for (IntWritable val : values) { 

        sum += val.get(); 

      } 

      result.set(sum); 

      context.write(key, result); 

    } 

  } 



© Spinnaker Labs, Inc. 

The driver to set things up and start 

//   Usage: wordcount <in> <out>  

 public static void main(String[] args) throws Exception { 

    Configuration conf = new Configuration(); 

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 

    Job job = new Job(conf, "word count"); 

    job.setJarByClass(WordCount.class); 

    job.setMapperClass(TokenizerMapper.class); 

    job.setCombinerClass(IntSumReducer.class); 

    job.setReducerClass(IntSumReducer.class); 

    job.setOutputKeyClass(Text.class); 

    job.setOutputValueClass(IntWritable.class); 

    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 

    System.exit(job.waitForCompletion(true) ? 0 : 1); 

  } 



Systems Support for MapReduce 

 

User App 

MapReduce 

Distributed File Systems (Hadoop, 
Google) 
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Distributed Filesystems 

• The interface is the same as a single-machine file system 

– create(), open(), read(), write(), close() 

• Distribute file data to a number of machines (storage units). 

– Support replication 

• Support concurrent  data access 

– Fetch content from remote servers. Local caching 

• Different implementations sit in different places on 
complexity/feature scale 

– Google file system  and Hadoop HDFS 

» Highly scalable for large data-intensive applications. 

» Provides redundant storage of massive amounts of data 
on cheap and unreliable computers 
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Assumptions of GFS/Hadoop DFS 

• High component failure rates 

– Inexpensive commodity components fail all the time 

• “Modest” number of HUGE files 

– Just a few million 

– Each is 100MB or larger; multi-GB files typical 

• Files are write-once, mostly appended to 

– Perhaps concurrently 

• Large streaming reads 

• High sustained throughput favored over low latency 



Client 

Client 

Misc. servers 

Client 

R
e
p

li
c
a
s
 

Masters 

GFS Master 

GFS Master 

C0 C1 

C C5 

Chunkserver 1 

C0 

C 

C5 

Chunkserver N 

C1 

C C5 

Chunkserver 2 

… 

• Files  are broken into chunks (typically 64 MB) and serve in chunk servers 

• Master manages metadata, but clients may cache meta data obtained. 

• Data transfers happen directly between clients/chunk-servers 

• Reliability through replication 

Each chunk replicated across 3+ chunk-servers 

 

GFS Design 



Hadoop Distributed File System 

• Files split into 128MB blocks 

• Blocks replicated across 
several datanodes (often 3) 

• Namenode stores metadata 
(file names, locations, etc) 

• Optimized for large files, 
sequential reads 

• Files are append-only 

Namenode 

Datanodes 

1 
2 
3 
4 

1 
2 
4 

2 
1 
3 

1 
4 
3 

3 
2 
4 

File1 



Hadoop DFS 



GFS Client Block Diagram 

GFS-Aware Application

POSIX API GFS API

Regular VFS with local and 

NFS-supported files
Separate GFS view

Network stack

GFS Master

GFS Chunkserver

GFS Chunkserver

Specific drivers...

Client computer

• Provide both POSIX standard file interface, and costumed API 

• Can cache meta data for direct client-chunk server access 



Read/write access flow in GFS 



Hadoop DFS with MapReduce 



MapReduce: Execution overview 

Reducers output the result on stable storage. 

Shuffle phase assigns reducers to these buffers, which are remotely read 
and processed by reducers. 

Map task reads the allocated data, saves the map results in local buffer. 

Master Server distributes M map tasks to machines and monitors their 
progress. 



Execute MapReduce on a cluster of machines with 
Hadoop DFS 



MapReduce in Parallel: Example 
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MapReduce: Execution Details 

• Input reader 

– Divide input into splits, assign each split to a Map task 

• Map task 

– Apply the Map function to each record in the split 

– Each Map function returns a list of (key, value) pairs 

• Shuffle/Partition and Sort 

– Shuffle distributes sorting & aggregation to many reducers 

– All records for key k are directed to the same reduce processor 

– Sort groups the same keys together, and prepares for aggregation 

• Reduce task 

– Apply the Reduce function to each key 

– The result of the Reduce function is a list of (key, value) pairs 



MapReduce with data shuffling& sorting 
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Tom White, Hadoop: The Definitive Guide 



MapReduce: Runtime Environment &Hadoop 

Partitioning the input data. 
Scheduling program across cluster of 
machines, Locality Optimization and 

Load balancing 

Dealing with machine failure 
Managing Inter-Machine 

communication 

MapReduce Runtime 
Environment 



Hadoop Cluster with MapReduce 

 



MapReduce: Fault Tolerance 

• Handled via re-execution of tasks. 

 Task completion committed through master  

• Mappers save outputs to local disk before serving to reducers 

– Allows recovery if a reducer crashes 

– Allows running more reducers than # of nodes 

•If a task crashes: 

– Retry on another node 

» OK for a map because it had no dependencies 

» OK for reduce because map outputs are on disk 

– If the same task repeatedly fails, fail the job or ignore that input block 

– : For the fault tolerance to work, user tasks must be deterministic and side-
effect-free 

2. If a node crashes: 

– Relaunch its current tasks on other nodes 

– Relaunch any maps the node previously ran 

» Necessary because their output files were lost along with the crashed node 

 



MapReduce:  
Locality Optimization 

   

• Leverage the distributed file system to schedule a map 
task on a machine that contains a replica of the 
corresponding input data. 

 

• Thousands of machines read input at local disk speed 

 

• Without this, rack switches limit read rate 

 

 

 

 



MapReduce: Redundant Execution 

   

• Slow workers are source of bottleneck, may delay 
completion time. 

 

• Near end of phase, spawn backup tasks, one to finish 
first wins. 

 

• Effectively utilizes computing power, reducing job 
completion time by a factor.  
 

 

 



MapReduce:  
 Skipping Bad Records 

   

• Map/Reduce functions sometimes fail for particular 
inputs. 

 

• Fixing the Bug might not be possible : Third Party 
Libraries. 

 

• On Error 

– Worker sends signal to Master 

– If multiple error on same record, skip record 
 

 



MapReduce: 
 Miscellaneous Refinements 

   

• Combiner function at a map task 

 

• Sorting Guarantees within each reduce partition. 

 

• Local execution for debugging/testing  

 

• User-defined counters 
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Combining Phase 

• Run on map machines after map phase 

• “Mini-reduce,” only on local map output 

• Used to save bandwidth before sending data to 
full reduce tasks 

• Reduce tasks can be combiner if commutative 
& associative 
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Combiner, graphically 

Combiner 

replaces with:

Map output

To reducer

On one mapper machine:

To reducer



Examples of MapReduce Usage in Web Applications 

 

• Distributed Grep. 

 

• Count of URL Access 
Frequency. 

 

• Clustering (K-means) 

 

• Graph Algorithms. 

 

• Indexing Systems 

 

MapReduce Programs In 
Google Source Tree  



Hadoop and Tools 

• Various Linux Hadoop clusters around 

– Cluster +Hadoop 

» http://hadoop.apache.org 

– Amazon EC2 

• Winows and other platforms 

– The NetBeans plugin simulates Hadoop 

– The workflow view works on Windows 

• Hadoop-based tools 

– For Developing in Java, NetBeans plugin 

• Pig Latin, a SQL-like high level data processing script language 

• Hive, Data warehouse, SQL 

• Mahout, Machine Learning algorithms on Hadoop 

• HBase, Distributed data store as a large table 

44 



More MapReduce Applications 

• Map Only processing 

• Filtering and accumulation 

• Database join 

• Reversing graph edges 

• Producing inverted index for web search 

• PageRank graph processing 

45 



MapReduce Use Case 1: Map Only 

Data distributive tasks – Map Only 

• E.g. classify individual documents 

• Map does everything 

– Input: (docno, doc_content), … 

– Output: (docno, [class, class, …]), … 

• No reduce tasks 

46 



MapReduce Use Case 2: Filtering and 
Accumulation 

Filtering & Accumulation – Map and Reduce 

• E.g. Counting total enrollments of two given  student classes 

• Map selects records and outputs initial counts 

– In: (Jamie, 11741), (Tom, 11493), … 

– Out: (11741, 1), (11493, 1), … 

• Shuffle/Partition by class_id 

• Sort 

– In: (11741, 1), (11493, 1), (11741, 1), … 

– Out: (11493, 1), …, (11741, 1), (11741, 1), … 

• Reduce accumulates counts 

– In: (11493, [1, 1, …]), (11741, [1, 1, …]) 

– Sum and Output: (11493, 16), (11741, 35) 
47 



MapReduce Use Case 3: Database Join 
• A JOIN is a means for combining fields from two tables by using 

values common to each. 

• Example :For each employee, find the department he works in 

 
Employee Table 

LastName DepartmentID 

Rafferty 31 

Jones 33 

Steinberg 33 

Robinson 34 

Smith 34 

Department Table 

DepartmentID DepartmentName 

31 Sales 

33 Engineering 

34 Clerical 

35 Marketing 

         JOIN 

Pred: 

EMPLOYEE.DepID= 

DEPARTMENT.DepID 

 

JOIN RESULT 

LastName DepartmentName 

Rafferty Sales 

Jones Engineering 

Steinberg Engineering 

… … 



MapReduce Use Case 3 – Database Join 

Problem: Massive lookups 

– Given two large lists: (URL, ID) and (URL, doc_content) pairs 

– Produce (URL, ID, doc_content)  or (ID, doc_content) 

Solution:  

• Input stream: both (URL, ID) and (URL, doc_content) lists 

– (http://del.icio.us/post, 0), (http://digg.com/submit, 1), … 

– (http://del.icio.us/post, <html0>), (http://digg.com/submit, <html1>), … 

• Map simply passes input along, 

• Shuffle and Sort on URL (group ID & doc_content for the same URL together) 

– Out: (http://del.icio.us/post, 0), (http://del.icio.us/post, <html0>), 
(http://digg.com/submit, <html1>), (http://digg.com/submit, 1), … 

• Reduce outputs result stream of (ID, doc_content) pairs 

– In: (http://del.icio.us/post, [0, html0]), (http://digg.com/submit, [html1, 1]), … 

– Out: (0, <html0>), (1, <html1>), … 
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MapReduce Use Case 4:   Reverse graph edge 
directions & output in node order 

• Input example: adjacency list of graph (3 nodes and 4 edges) 

(3, [1, 2])         (1, [3]) 

(1, [2, 3])     (2, [1, 3]) 

                         (3, [1]) 

• node_ids in the output values are also sorted.   
But Hadoop only sorts on keys! 

• MapReduce format 

– Input:     (3, [1, 2]),   (1, [2, 3]). 

– Intermediate: (1, [3]), (2, [3]),   (2, [1]), (3, [1]).  (reverse edge 
direction) 

– Out:  (1,[3])  (2, [1, 3])  (3, [[1]). 

1 2 

3 

1 2 

3 

 
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MapReduce Use Case 5: Inverted Indexing 
Preliminaries 

Construction of  inverted lists for document 
search 

• Input: documents: (docid, [term, term..]), 
(docid, [term, ..]), .. 

• Output: (term, [docid, docid, …]) 

– E.g., (apple, [1, 23, 49, 127, …]) 

A document id is an internal document id, e.g., 
a unique integer 

• Not an external document id such as a url 

© 2010, Jamie Callan  51 



Using MapReduce to Construct Indexes: 
A Simple Approach 

A simple approach to creating inverted lists 

• Each Map task is a document parser 

– Input:  A stream of documents 

– Output:  A stream of (term, docid) tuples 

» (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) … 

» We may create internal IDs for words. 

• Shuffle sorts tuples by key and routes tuples to Reducers 

• Reducers convert streams of keys into streams of inverted lists 

– Input: (long, 1) (long, 127) (long, 49) (long, 23) … 

– The reducer sorts the values for a key and builds an inverted list 

– Output:  (long, [df:492, docids:1, 23, 49, 127, …]) 
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Inverted Index: Data flow 

This page contains 

so much text

My page contains 

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output



Processing Flow Optimization 

A more detailed analysis of processing flow 

• Map:  (docid1, content1)  (t1, docid1) (t2, docid1) … 

• Shuffle by t, prepared for map-reducer communication 

• Sort by t,  conducted in a reducer machine 

 (t5, docid1) (t4, docid3) …  (t4, docid3) (t4, docid1) (t5, docid1) … 

• Reduce:  (t4, [docid3 docid1 …])  (t, ilist) 

 

docid: a unique integer 

t:  a term, e.g., “apple” 

ilist: a complete inverted list 

but a) inefficient, b) docids are sorted in reducers, and c) assumes 
ilist of a word fits in memory 
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Using Combine () to Reduce Communication 

• Map: (docid1, content1)  (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) … 

– Each output inverted list covers just one document 

• Combine locally 

Sort by t 

Combine:  (t1 [ilist1,2 ilist1,3 ilist1,1 …])  (t1, ilist1,27)  

– Each output inverted list covers a sequence of documents 

• Shuffle by t 

• Sort by t 

(t4, ilist4,1) (t5, ilist5,3) …  (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) … 

• Reduce:  (t7, [ilist7,2, ilist3,1, ilist7,4, …])  (t7, ilistfinal) 

 

ilisti,j: the j’th inverted list fragment for term i 
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Using MapReduce to Construct Indexes 

Parser / 

Indexer 

Parser / 

Indexer 

Parser / 

Indexer 

: 

: 

: 

: 

: 

: 

Merger 

Merger 

Merger 

: 

: 

A-F 

Documents 

Inverted 

Lists 

Map/Combine 

Inverted List 

Fragments 

Shuffle/Sort Reduce 

G-P 

Q-Z 



Construct Partitioned Indexes 

• Useful when the document list of a term does not fit 
memory 

• Map:  (docid1, content1)  ([p, t1], ilist1,1) 

• Combine to sort and group values 

  ([p, t1] [ilist1,2 ilist1,3 ilist1,1 …])  ([p, t1], ilist1,27)  

• Shuffle by p 

• Sort values by [p, t] 

• Reduce:  ([p, t7], [ilist7,2, ilist7,1, ilist7,4, …])  ([p, t7], 
ilistfinal) 

 

p:  partition (shard) id 
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Generate Partitioned Index 

Parser / 

Indexer 

Parser / 

Indexer 

Parser / 

Indexer 

: 

: 

: 

: 

: 

: 

Merger 

Merger 

Merger 

: 

: 

Partition 

Documents 

Inverted 

Lists 

Map/Combine 

Inverted List 

Fragments 

Shuffle/Sort Reduce 

Partition 

Partition 



 

 

 

 

 

 

MapReduce Use Case 6: PageRank 



PageRank 
 

 
 Model page reputation on the web 

 
 
 
 
 

 i=1,n lists all parents of page x. 
 

 PR(x) is the page rank of each page. 
 

 C(t) is the out-degree of t. 
 

 d is a damping factor . 
 
 

 
 
 





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i i

i
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0.2 

0.2 

0.4 



Computing PageRank Iteratively  

Start with seed 
PageRank values 

Each page distributes 
PageRank “credit” to 
all pages it points to. 

Each target page adds up 
“credit” from multiple in-

bound links to compute PRi+1 

   

 Effects at each iteration is local. i+1th iteration depends only on ith 

iteration 

 At iteration i, PageRank for individual nodes can be computed 
independently  

 

 

 



 PageRank  using  MapReduce 

Map: distribute PageRank “credit” to link targets 

Reduce: gather up PageRank “credit” from 
multiple sources to compute new PageRank value 

Iterate until 
convergence 

Source of Image: Lin 2008 



PageRank Calculation: 
Preliminaries 

One PageRank iteration: 

• Input: 

– (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) 
.. 

• Output: 

– (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22, 
..]) .. 

MapReduce elements 

• Score distribution and accumulation 

• Database join 
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PageRank:  
Score Distribution and Accumulation 

• Map 

– In: (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, 
out22, ..]) .. 

– Out: (out11, score1
(t)/n1), (out12, score1

(t)/n1) .., (out21, 
score2

(t)/n2), .. 

• Shuffle & Sort by node_id 

– In: (id2, score1), (id1, score2), (id1, score1), .. 

– Out: (id1, score1), (id1, score2), .., (id2, score1), .. 

• Reduce 

– In: (id1, [score1, score2, ..]), (id2, [score1, ..]), .. 

– Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .. 
© 2010, Jamie Callan  64 



PageRank:  
Database Join to associate outlinks with score 

• Map 

– In & Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .., (id1, [out11, 
out12, ..]), (id2, [out21, out22, ..]) .. 

• Shuffle & Sort by node_id 

– Out: (id1, score1
(t+1)), (id1, [out11, out12, ..]), (id2, [out21, 

out22, ..]), (id2, score2
(t+1)), .. 

• Reduce 

– In: (id1, [score1
(t+1), out11, out12, ..]), (id2, [out21, out22, .., 

score2
(t+1)]), .. 

– Out: (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), 
out21, out22, ..]) .. 
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Conclusions 

• MapReduce advantages 

• Application cases 

– Map only: for totally distributive computation 

– Map+Reduce: for filtering & aggregation 

– Database join: for massive dictionary lookups 

– Secondary sort: for sorting on values 

– Inverted indexing: combiner, complex keys 

– PageRank: side effect files 
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