CS240A: Parallelism In
CSE Applications

Tao Yang
Slides revised from James Demmel and Kathy Yelick
www.cs.berkeley.edu/~demmel/cs267_ Sprll

Category of CSE Simulation Applications

- Discrete event systems t discrete
* Time and space are discrete

* Particle systems
« Important special case of lumped systems

 Ordinary Differentiation Equations (ODES)
e Location/entities are discrete, time is continuous

« Partial Differentiation Equations (PDES)
* Time and space are continuous

continuous

CS267 Lecture 4 2

Basic Kinds of CSE Simulation
Discrete event systems:

« “Game of Life,” Manufacturing systems, Finance, Circuits, Pacman
Particle systems:

 Billiard balls, Galaxies, Atoms, Circuits, Pinball ...
Ordinary Differential Equations (ODES),

» Lumped variables depending on continuous parameters

« systemis “lumped” because we are not computing the voltage/current at
every point in space along a wire, just endpoints

e Structural mechanics, Chemical kinetics, Circuits,
Star Wars: The Force Unleashed

Partial Differential Equations (PDES)
« Continuous variables depending on continuous parameters

» Heat, Elasticity, Electrostatics, Finance, Circuits, Medical Image
Analysis, Terminator 3: Rise of the Machines

For more on simulation in games, see
« www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

CS267 Lecture 4 3

http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

Table of Cotent

* Discrete Events and Particle Systems

_Finite-Difference Method for
ODE/PDE

* Discretize domain of a function

 For each point in the discretized domain, name it with a
variable, setup equations.

* The unknown values of those points form equations.
Then solve these equations

Euler’'s methodfor-ODE—
Initial-Value Problems

d ,
d—i=y =f(X,y); YX,)=1Y,

Straight line approximation

—Euler-Methaod

Approximate: y'(%,) = (y(x+Ah)—y(x,))/ Ah
o yn+1 — yn T Ah yn | T O(Ahz)

Yo = Yo +ART(X,, V) +O(Ah2)

Thus starting from an initial value y,

Vo = Y, +ANF(X,,y,) with O(Ah?) error

Example
%ﬂzl

X

yn+1 ~ yn _I_Ah f(Xn, yn) — yn _I_Ah (Xn T yn)

Ah =0.02

Exact Error

X Yn Y hy', Solution
0) 1.00000 | 1.00000 | 0.02000 | 1.00000 0.00000
0.02 1.02000 | 1.04000 | 0.02080 | 1.02040 | -0.00040
0.04 1.04080 | 1.08080 | 0.02162 | 1.04162 | -0.00082
0.06 1.06242 | 1.12242 | 0.02245 | 1.06367 | -0.00126
0.08 1.08486 | 1.16486 | 0.02330 | 1.08657 | -0.00171
0.1 1.10816 | 1.20816 | 0.02416 | 1.11034 | -0.00218
0.12 1.13232 | 1.25232 | 0.02505 | 1.13499 | -0.00267
0.14 1.15737 | 1.29737 | 0.02595 | 1.16055 | -0.00318
0.16 1.18332 | 1.34332 | 0.02687 | 1.18702 | -0.00370
0.18 1.21019 | 1.39019 | 0.02780 | 1.21443 | -0.00425
0.2 1.23799 | 1.43799 | 0.02876 | 1.24281 | -0.00482

ODE with boundary value

d’u 1du u
5 2:O
dr rdar r

u(5) =0.0038731",
u(8) =0.0030769"

http://numericalmethods.eng.usf.edu g

Solution

Using the approximation of

dzy ~ Vi —2Yi +¥ia d ﬂ ~ Yiaa — Yia
dx’ (A’ Todx o 2(ax)
sesye Uiy — 2ui +U, 1U, —U, U
2 + —— =0
(Ar) o 2(Ar) r

(‘) oy] (o } +£(Ai)2 ’ ZrTArj“‘“ -

http://numericalmethods.eng.usf.edu 1

Solution Cont

Step 1 At node i=0,r,=a=5
u, =0.0038731
Step 2 Atnode 1=L 1, =r+Ar=5+0.6=5.6"

— - + 1 U, +| — 2 1 u, + L + L u, =0
2(5.6)0.6) (067) | (0.6) (5.6)) \06° 2(6)06)) "
2.6290u, —5.5874u, +2.9266u, =0

Step 3 Atnode i=2, L=L+Ar=56+0.6=6.2

— L +1u+(—2—1ju+1+ 1 u, =0
2(6.2)0.6) 0.6%)" \ 06° 6.2°)° 062 2(6.2)06))"°

2.6434u, —5.5816u,+2.9122u, =0

http://numericalmethods.eng.usf.edu 11

Solution Cont

Step 4 Atnode i=3, rp,=r,+Ar=6.2+0.6=6.8

— L +1u+(—2—1ju+1+ L u, =0
2(6.8)(06) 06%?)° | 06° 6.8°)° (06° 2(6.8)(0.6))"

2.6552U, —5.5772U, + 2.9003u, =0

Step 5 Atnodei=4, ,=L+Ar=68+0.6=7.4

— L + 1 U, +| — 2 1 u, + L + L u. =0
2(7.4f06) 06%)° | 06> (74)7)" |06 2(7.4)06)) "
2.6651u, —5.6062u, +2.8903u; =0

Step 6 Atnode i=5 L= +Ar=74+0.6=8

ug =u/,_, =0.0030769

http://numericalmethods.eng.usf.edu 1o

Solving system of equations

1

0

0
0
0

0 0

2.6290 -5.5874 2.9266

2.6434 —5.5816

0 0 0
0 0 0
2.9122 0 0

0 2.6552 —5.5772 2.9003 0
2.6651 -5.6062 2.8903

0 0
0 0

u, =0.0038731
u, = 0.0036115
u, =0.0034159

0

0 1

u, = 0.0032689

u, = 0.0031586
u, = 0.0030769

U,] 700038731
U, 0
u, 3 0
U, N 0
u, 0
0.0030769
| Us | - -

Graph and “stencil”

E———— e ——
X X X

http://numericalmethods.eng.usf.edu 1 3

Compressed Sparse Row (CSR) Format

PMV: y =y + A*X, only store, do arithmetic, on nonzero entries

_ X Representation of A

H) T

y

Matrix-vector multiply kernel: y() < y() + A(,j) X X(j)

for each row 1
for k=ptr[i] to ptr[i+l]-1 do

y[i]l = y[i] + vall[k]*x[ind[k]]
CS267 Lecture 4 15

_Parallel Sparse Matrix-vector multiplication

* y = A*X, where A is a sparse n X n matrix

* Questions

« which processors store
* V[i], X[i], and A[i,j]

» which processors compute

S e

S
P

e S R R e R R
e T e e
e e e e e R
e e e e

K

ettt

S R R
e e e e R R
e S R R e R R

* y[i] = sum (from 1 to n) A[i,j] * X[]]

 Partitioning

= (row i of A) * x

... a sparse dot product

 Partition index set {1,...,n} =N1 U N2 U ... U Np.

» For all i in Nk, Processor k stores y[i], X[i], and row i of A

« For all i in Nk, Processor k computes yJ[i] = (row i of A)
- “owner computes” rule: Processor k compute the yJ[i]s itowns.

CS267 Lecture 4

Pl

P2

P3

P4

May require
communication

——

16

Matrix-processor mapping vs graph partitionin

 Relationship between matrix and graph

/1 1 1
21 1 1

3 1 1
411 1 1 1 1
o|| 1 11 1
6 1 1 1

« A “good” partition of the graph has
» equal (weighted) number of nodes in each part (load and storage balance).
* minimum number of edges crossing between (minimize communication).

* Reorder the rows/columns by putting all nodes in one partition together.

02/09/2010 CS267 Lecturd 7

Matrix Reordering via Graph Partitioning

 “Ideal” matrix structure for parallelism: block diagonal
* p (number of processors) blocks, can all be computed locally.
* |If no non-zeros outside these blocks, no communication needed

« Can we reorder the rows/columns to get close to this?
« Most nonzeros in diagonal blocks, few outside

PO P1 P2 P3 P4
L T T 7T T]

PO
P1
P2
P3
P4

CS267 Lecture 4 18

Graph Partitioning and Sparse Matrices

 Relationship between matrix and graph

1 1 1
2 &1 1 1
3] 1|1 1
411 1 1
5o 1 1 1 1
6 1 1 1

« Edges in the graph are nonzero in the matrix:

« If divided over 3 procs, there are 14 nonzeros outside the diagonal
blocks, which represent the 7 (bidirectional) edges

CS267 Lecture 4 19

Goals of Reordering

« Performance goals
 balance load (how is load measured?).
* Approx equal number of nonzeros (not necessarily rows)
 balance storage (how much does each processor store?).
« Approx equal number of nonzeros
* minimize communication (how much is communicated?).
* Minimize nonzeros outside diagonal blocks
» Related optimization criterion is to move nonzeros near diagonal
 iImprove register and cache re-use

« Group nonzeros in small vertical blocks so source (x) elements
loaded into cache or registers may be reused (temporal locality)

« Group nonzeros in small horizontal blocks so nearby source (x)
elements in the cache may be used (spatial locality)

« Other algorithms reorder for other reasons
« Reduce # nonzeros in matrix after Gaussian elimination

* Improve numerical stability
CS267 Lecture 4 20

Table of Cotent
- ODE

« PDE <

* Discrete Events and Particle Systems

Solving PDEs

* Finite element method

* Finite difference method (our focus)

« Converts PDE into matrix equation
* Linear system over discrete basis elements

« Result is usually a sparse matrix

Au, +2Bu, +Cu, +Eu, +Fu, +Gu=H

* Linear second-order PDEs are of the form

where A - H are functions of x and y only
* Elliptic PDEs: B2- AC<0

(steady state heat equations)

e Parabolic PDEs: B2- AC =0

(heat transfer equations)

« Hyperbolic PDEs: B>- AC >0

(wave equations)

EE

2-aRis

Heat Ecuation (300

Sensitivity of Heat Equation (303

High

Temperature profile

Wolfram 3§ Demonst

rations Project demonstration:

wolfram.com

Steam

Ice bath

Steam

Steam

B 80-100
[160-80
[140-60
W 20-40
[0 0-20

Solving the Heat Problem with PDE

« Underlying PDE is the Poisson equation

U, +U, =T(XYy)
 This is an example of an elliptical PDE

* Will create a 2-D grid

« Each grid point represents value of state state solution
at particular (x, y) location in plate

000000000000

£ () f(x+h)-21(x)+ f(x—h)

h2

Finite-difference

« Assume f(x,y)=0

1
F(ui—l,j —2U; ;+ Ui ;)
1
- Namely +F(ui—1,j+l_2ui,j+l+ui+1,j+1) =0
4ui,j —Uija Ui Uiy — Ui = 0

Matrx vs. graph representation

(4 1 1 \ Graph and “5 point stencil”
1 4 -1 -1
1 4 1
1 4 -1 -1
L= 1 1 4 4 1
-1 1 4 1
1 4 -1
1 1 4 1 3D case is analogous
\ 1 1 4 (7 point stencil)

02/01/2011 CS267 Lecture 5 og

Jacobi method for iterative solutions

Start with initial values.
lteratively update variables based on equations
For i=1 to n
for j= 1 to n
wli][J] = (u[i-1][3J] + uli+1][3]] +
u[i][j-1] + u[i][j+1]) / 4.0;

Swap w and u
(u(@,)+1)

u(i-1,j) u(i+1,j)
w(l.})

u(i.j-1)

Gauss Seidel Iterative Method

For 1 =1, n
For J =1, n
uli][j] = (u[i-1][J] + u[1i+1][3]] +
u[i] [j-1] + u[i][j+1]) / 4.0;
u(j+1)
u(i-1,j) | u(i+1,))
W(i,j)

u(i,J-1)

Gauss-Seidel method for equation solving

(a) 2D dependence graph

Sti:p L

02/01

Different Dependence Patterns (Stencil

Processor Partitioning in Reqgular meshes

« Computing a Stencil on a regular mesh

* need to communicate mesh points near boundary to
neighboring processors.
« Often done with ghost regions
« Surface-to-volume ratio keeps communication down, but
« Still may be problematic in practice

Implemented using
D “ghost” regions.

Adds memory overhead

02/01/2011 CS267 Lecture 534

Composite mesh from a mechanical structure

Mechanical Structure with Mesh

13T N

0.5

ol
D
1

D5 1 I I ! 1 !] 1 I
-5 — -3 -2 -1 0 1 2 3 4 2

02/01/2011 CS267 Lecture 5 35

Converting the mesh to a matrix

Mesh numbered in natural order

2 T T T T T T T T T Matrix .A, in natural order
266:320 [330:370) [371:408) {407:447) tddg:483) D
15F . 5ol
T . 100
05 - 150
ok - 200
-05F . 250
e (176:217) - S00
350
-15F] o i
A QOOIA 400
2 TATATAR i
s091) | (92:1%) (134179) 1 . 450
25
& 8 B sl 0 1 2 3 4 5

02/01/2011 CS267 Lecture 5 3¢

Example of Matrix Reordering Application

When performing
Gaussian Elimination
Zeros can be filled ®

100}
200}
300F

400

0 100 200 300

Ain natural order

400

Cholesky factor, flops=296323

100

200t

300f

400}

0 100 200 300 400
nz= 11533, red="fill-in

Matrix can be reordered
to reduce this fill

But it’ s not the same
ordering as for
parallelism

100

200t

300t

4001

m =3971
A after minimum degree
!]
O -
&7
x: 3 i N o
- g
s,
» - B}
Fi v
o .l_... .;h..:';?.. C
s : 4’55:..‘:‘“:':‘:-5 o
0 100 200 300 400
e =3871
02/01/2011

Cholesky factor, flops=198236

100

200t

300¢

4001

0 100 200 300 400
m =8440, red =filin

CS267 Lecture 7 37

lon)

t solut

2D (direc

In

NASA Airfoll

Irregular mesh

Finite Element Mesh of NASA Airfoil

D
A_vird.v
- 4»«»»&&&%.

Vavey,
P A et
- N s
s
LR

4

4y,

A
e

g

T

IS

R

T
7

<NY '
< { -
A B

(e =]

0.

0.7

0.5 0.6
4253 grid points

0.4

03

0.2

0.1

Structure of Cholesky factor L of A

Structure of A

0

2000 3000

1000
nnz{)=214755 flops

1000¢

2000¢

3000+

40001

2000 3000 4000

nnz{A)=28631

1000

1000}"

2000¢

3000+

4000

CS267 Lecture 5 38

4000

11533587

0

0

Irreqular mesh and multigrid

Example of Prometheus meshes

02/01/201

Challenges of Irregular Meshes

« How to generate them in the first place
e Start from geometric description of object
* Triangle, a 2D mesh partitioner by Jonathan Shewchuk
« 3D harder!
« How to partition them
« ParMetis, a parallel graph partitioner
« How to design iterative solvers
 PETSc, a Portable Extensible Toolkit for Scientific
Computing
* Prometheus, a multigrid solver for finite element
problems on irregular meshes
« How to design direct solvers
« SuperLU, parallel sparse Gaussian elimination

02/01/2011 CS267 Lecture 5 4

Table of Cotent

 ODE

* PDE

» Discrete Events and Particle Systems <:

Discrete Event Systems

« Systems are represented as:
» finite set of variables.
* the set of all variable values at a given time is called the state.

« each variable is updated by computing a transition function
depending on the other variables.

e System may be:

* synchronous: at each discrete timestep evaluate all transition
functions; also called a state machine.

« asynchronous: transition functions are evaluated only if the

inputs change, based on an “event” from another part of the
system; also called event driven simulation.

« Example: The “game of life:”sharks and fish living in an
ocean o S
 breeding, eating, and death i €

* forces in the ocean&between sea creatures

CS267 Lecture 4

Parallelism in Game of Life

» The simulation is synchronous
 use two copies of the grid (old and new).
* the value of each new grid cell depends
only on 9 cells (itself plus 8 neighbors) in old grid.

» simulation proceeds in timesteps-- each cell is updated at every step.
» Easy to parallelize by dividing physical domain: Domain Decomposition

P1

P2

P3

P4

P5

P6

P7

P8

P9

Repeat
compute locally to update local system
barrier()
exchange state info with neighbors
until done simulating

* How to pick shapes of domains?

CS267 Lecture 4 43

Regular Meshes (e.g. Game of Life)

« Suppose graph is nxn mesh with connection NSEW neighbors
» Which partition has less communication? (n=18, p=9)

* Minimizing communication on mesh =
minimizing “surface to volume ratio” of

artition

n*(p-1)

2n*(pl/2-1)

edge crossings

~ edge crossings

CS267 Lecture 4

Synchronous Circuit Simulation

 Circuit is a graph made up of subcircuits connected by wires
« Parallel algorithm is timing-driven or synchronous:
« Evaluate all components at every timestep (determined by known circuit delay)
« Graph partitioning assigns subgraphs to processors
» Goal 1 is to evenly distribute subgraphs to nodes (load balance).
» Goal 2 is to minimize edge crossings (minimize communication).

bd
®

l<v7l

better —— —— X — N
oo oo
oo Lo

edge crossings = 6 edge crossings = 10
CS267 Lecture 4 45

Asynchronous Simulation

« Synchronous simulations may waste time:
« Simulates even when the inputs do not change,.

« Asynchronous (event-driven) simulations update only
when an event arrives from another component:
* No global time steps, but individual events contain time stamp.
« Example: Game of life in loosely connected ponds (don’ t simulate
empty ponds).
« Example: Circuit simulation with delays (events are gates
changing).
« Example: Traffic simulation (events are cars changing lanes, etc.).
« Asynchronous is more efficient, but harder to parallelize

* In MPI, events are naturally implemented as messages, but how
do you know when to execute a “receive”?

CS267 Lecture 4 46

Particle Systems

* A particle system has
« a finite number of particles
« moving in space according to Newton’ s Laws (i.e. F = ma)
e time is continuous

« Examples

stars in space with laws of gravity
electron beam in semiconductor manufacturing

atoms in a molecule with electrostatic forces

neutrons in a fission reactor

cars on a freeway with Newton’ s laws plus model of driver and
engine

balls in a pinball game

CS267 Lecture 4

Forces in Particle Systems

 Force on each particle can be subdivided
force = external force + nearby force + far field force

 External force
« ocean current to sharks and fish world
 externally imposed electric field in electron beam

* Nearby force
 sharks attracted to eat nearby fish
* balls on a billiard table bounce off of each other

* Far-field force
« fish attract other fish by gravity-like (1/r*2) force
* gravity, electrostatics, radiosity in graphics

CS267 Lecture 4 48

Example: Fish in an External Current

% fishp = array of initial fish positions (stored as complex numbers)
% fishv = array of initial fish velocities (stored as complex numbers)
% fishm = array of masses of fish

% tfinal = final time for simulation (0 = initial time)

dt=.01;, t=0;
% loop over time steps
while t < tfinal,

t=t+dt;
fishp = fishp + dt*fishv;
accel = current(fishp)./fishm; % current depends on position

fishv = fishv + dt*accel;
% update time step (small enough to be accurate, but not too small)
dt = min(.1*max(abs(fishv))/max(abs(accel)),1);
end

CS267 Lecture 4 49

Parallelism in External Forces

* These are the simplest
* The force on each particle is independent

« Called “embarrassingly parallel”
« Sometimes called “map reduce” by analogy

« Evenly distribute particles on processors
 Any distribution works
 Locality is not an issue, no communication

» For each particle on processor, apply the external force

« May need to “reduce” (eg compute maximum) to compute time
step, other data

CS267 Lecture 4 50

Parallelism in Nearby Forces
* Nearby forces require interaction and therefore
communication.

* Force may depend on other nearby particles:
« Example: collisions.
« simplest algorithm is O(n?): look at all pairs to see if they collide.
« Usual parallel model is domain decomposition of
physical region in which particles are located
* O(n/p) particles per processor if evenly distributed.

CS267 Lecture 4 51

Parallelism in Nearby Forces

« Challenge 1: interactions of particles near processor

boundary:
* need to communicate particles near boundary to neighboring

processors.
« Region near boundary called “ghost zone”
« Low surface to volume ratio means low communication.
« Use squares, not slabs, to minimize ghost zone sizes

@
@ @
(]
o ° ° Communicate particles in
o . .
" boundary region to neighbors
=
’ =
| Need to check for
° | collisions between
regions

CS267 Lecture 4 52

Parallelism in Nearby Forces

« Challenge 2: load imbalance, if particles cluster:
« galaxies, electrons hitting a device wall.

» To reduce load imbalance, divide space unevenly.
« Each region contains roughly equal number of particles.
* Quad-tree in 2D, oct-tree in 3D.

Example: each square
contains at most 3
particles

CS267 Lecture 4

Parallelism in Far-Field Forces

* Far-field forces involve all-to-all interaction and therefore
communication.

» Force depends on all other particles:
« Examples: gravity, protein folding
« Simplest algorithm is O(n?)
 Just decomposing space does not help since every particle
needs to “visit” every other particle.

Implement by rotating particle sets.

+> P +> +> P « Keeps processors busy

 All processor eventually see all
particles

« Use more clever algorithms to beat O(n?).

CS267 Lecture 4 54

Far-field Forces: Particle-Mesh Methods

« Based on approximation:
» Superimpose a regular mesh.
« “Move” particles to nearest grid point.
» Exploit fact that the far-field force satisfies a PDE that is easy to
solve on a regular mesh:
« FFT, multigrid (described in future lectures)
« Cost drops to O(n log n) or O(n) instead of O(n?)

« Accuracy depends on the fineness of the grid is and the uniformity
of the particle distribution.

| o\!‘ ./‘

1) Particles are moved to nearby Ne Ne
mesh points (scatter) N o

2) Solve mesh problem . °

3) Forces are interpolated at Ne T Ne
particles from mesh points
(gather)

CS267 Lecture 4 55

_Far-field forces: Tree Decomposition

« Based on approximation.

 Forces from group of far-away particles “simplified” --
resembles a single large particle.

« Use tree; each node contains an approximation of descendants.
 Also O(n log n) or O(n) instead of O(n?).
« Several Algorithms _
* Barnes-Hut. o | [e °
« Fast multipole method (FMM)

of Greengard/Rohklin.
« Anderson’ s method.

* Discussed In later lecture. o .

CS267 Lecture 4 56

Summary of Particle Methods

« Model contains discrete entities, namely, particles
* Time Is continuous — must be discretized to solve

 Simulation follows particles through timesteps
« Force = external force + nearby force + far_field force
« All-pairs algorithm is simple, but inefficient, O(n?)

 Particle-mesh methods approximates by moving particles to a
regular mesh, where it is easier to compute forces

* Tree-based algorithms approximate by treating set of particles
as a group, when far away

« May think of this as a special case of a “lumped” system

CS267 Lecture 4 57

