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Category of CSE Simulation Applications 

• Discrete event systems 

• Time and space are discrete 

• Particle systems 

• Important special case of lumped systems 

• Ordinary Differentiation Equations (ODEs) 

• Location/entities are discrete, time is continuous 

• Partial Differentiation Equations (PDEs) 

• Time and space are continuous 

discrete 

continuous 
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Basic Kinds of CSE Simulation 
• Discrete event systems: 

•  “Game of Life,” Manufacturing systems, Finance, Circuits, Pacman 

• Particle systems: 

• Billiard balls, Galaxies, Atoms, Circuits, Pinball … 

• Ordinary Differential  Equations (ODEs),  

• Lumped variables depending on continuous parameters  

• system is “lumped” because we are not computing the voltage/current at 

every point in space along a wire, just endpoints 

• Structural mechanics, Chemical kinetics, Circuits,                                         

Star Wars: The Force Unleashed 

• Partial Differential Equations (PDEs)  

• Continuous variables depending on continuous parameters 

• Heat, Elasticity, Electrostatics, Finance, Circuits,  Medical Image 

Analysis, Terminator 3: Rise of the Machines 

• For more on simulation in games, see 

• www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD 

 

http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD


Table of Cotent 

• ODE 

 

• PDE 

 

• Discrete Events and Particle Systems 



Finite-Difference Method for 
ODE/PDE 

• Discretize domain of a function 

• For each point in the discretized domain, name it with a 

variable, setup equations.  

• The unknown values  of those points form equations. 

Then solve these equations 

 



Euler’s method for ODE 
Initial-Value Problems 
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Euler Method 
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Example 

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482
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ODE with boundary value 
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Solution 
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Solution Cont 
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Solving system of equations 
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Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j) Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j) 

 

for each row i 

 for k=ptr[i] to ptr[i+1]-1 do 

  y[i] = y[i] + val[k]*x[ind[k]] 

Compressed Sparse Row (CSR) Format 

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j) 

 

for each row i 

 for k=ptr[i] to ptr[i+1]-1 do 

  y[i] = y[i] + val[k]*x[ind[k]] 

A 
y 

x Representation of A 

SpMV: y = y + A*x,       only store, do arithmetic, on nonzero entries 
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Parallel Sparse Matrix-vector multiplication 

• y = A*x, where A is a sparse  n x n matrix 

 

 

 

• Questions 

• which processors store 

• y[i], x[i], and A[i,j] 

• which processors compute 

• y[i] = sum (from 1 to n) A[i,j] * x[j] 

            = (row i of A) * x          … a sparse dot product 

• Partitioning 

• Partition index set {1,…,n} = N1  N2  …  Np. 

• For all i in Nk, Processor k stores y[i], x[i], and row i of A  

• For all i in Nk, Processor k computes y[i] = (row i of A) * x 

• “owner computes” rule: Processor k compute the y[i]s it owns. 

x 

y 

P1 

P2 

P3 

P4 

May require 

communication 
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Matrix-processor mapping vs graph partitioning 

1    1     1                      1 

2    1     1             1               1 

3                   1     1               1 

4           1      1     1       1  

5    1                    1       1      1 

6            1     1              1      1 

 

  1     2      3      4      5      6 

• Relationship between matrix and graph 

• A “good” partition of the graph has 

• equal (weighted) number of nodes in each part (load and storage balance). 

• minimum number of edges crossing between (minimize communication). 

• Reorder the rows/columns by putting all nodes in one partition together. 

3 

6 

1 

5 

4 2 
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Matrix Reordering via Graph Partitioning 

• “Ideal” matrix structure for parallelism: block diagonal 

• p (number of processors) blocks, can all be computed locally. 

• If no non-zeros outside these blocks, no communication needed 

• Can we reorder the rows/columns to get close to this? 

• Most nonzeros in diagonal blocks, few outside 

P0 

P1 

P2 

P3 

P4 

= * 

P0    P1   P2   P3  P4   
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Graph Partitioning and Sparse Matrices  

1    1                     1      1 

2           1     1       1      1 

3           1     1                      1 

4    1     1             1               1  

5    1     1                      1      1 

6                    1     1      1      1 

  1     2      3      4      5      6 

3 

6 

1 

5 

2 

• Relationship between matrix and graph 

• Edges in the graph are nonzero in the matrix: 

• If divided over 3 procs, there are 14 nonzeros outside the diagonal 

blocks, which represent the 7 (bidirectional) edges 

4 
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Goals of Reordering 

• Performance goals 

• balance load (how is load measured?). 

• Approx equal number of nonzeros (not necessarily rows) 

• balance storage (how much does each processor store?). 

• Approx equal number of nonzeros 

• minimize communication (how much is communicated?). 

• Minimize nonzeros outside diagonal blocks 

• Related optimization criterion is to move nonzeros near diagonal 

• improve register and cache re-use 

• Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 

• Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality) 

• Other algorithms reorder for other reasons 

• Reduce # nonzeros in matrix after Gaussian elimination 

• Improve numerical stability 
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• ODE 

 

• PDE 

 

• Discrete Events and Particle Systems 



Solving PDEs 

• Finite element method 

• Finite difference method (our focus) 
• Converts PDE into matrix equation 

• Linear system over discrete basis elements 

• Result is usually a sparse matrix 



Class of Linear  Second-order PDEs 

• Linear second-order PDEs are of the form 

 

 where A - H are functions of x and y only 

• Elliptic PDEs: B2 - AC < 0 
(steady state heat equations) 

• Parabolic PDEs: B2 - AC = 0 
(heat transfer equations) 

• Hyperbolic PDEs: B2 - AC > 0  
(wave equations) 

HGuFuEuCuBuAu yxyyxyxx  2



Various 2D/3D heat distribution 



2D Steady State Heat Distribution  

80-100

60-80

40-60

20-40

0-20

Steam 

Steam Steam 

Ice bath 



Solving the Heat  Problem with PDE 

• Underlying PDE is the Poisson equation 

 

 

• This is an example of an elliptical PDE 

• Will create a 2-D grid 

• Each grid point represents value of state state solution 
at particular (x, y) location in plate 

),( yxfuu yyxx 



Discrete 2D grid space 
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Finite-difference  

• Assume f(x,y)=0 

 

 

 
 

• Namely 
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Matrx vs. graph representation  
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Graph and “5 point stencil” 

3D case is analogous 

(7 point stencil) 



Jacobi method for iterative solutions 

For i=1 to n 

  for j= 1 to n 

     w[i][j] = (u[i-1][j] + u[i+1][j] + 

           u[i][j-1] + u[i][j+1]) / 4.0; 

 

Swap w and u 

 u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

Start with initial values. 

Iteratively update variables based on equations 



Gauss Seidel Iterative Method 

For i = 1, n 

For j = 1, n 

   u[i][j] = (u[i-1][j] + u[i+1][j] + 

           u[i][j-1] + u[i][j+1]) / 4.0; 

 

u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

u 



Gauss-Seidel method for equation solving 
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(a) 2D dependence graph 

(b) After red/black variable reordering 



Different Dependence Patterns (Stencil) 



Processor Partitioning  in  Regular meshes 

• Computing a Stencil on a regular mesh 

• need to communicate mesh points near boundary to 

neighboring processors. 

• Often done with ghost regions 

• Surface-to-volume ratio keeps communication down, but 

• Still may be problematic in practice 

02/01/2011 CS267 Lecture 5 34 

Implemented using 

“ghost” regions.   

Adds memory overhead 



Composite mesh from a mechanical structure 
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Converting the mesh to a matrix 

02/01/2011 CS267 Lecture 5 36 



Example of Matrix Reordering Application 
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When performing 

Gaussian Elimination 

Zeros can be filled  

Matrix can be reordered 

to reduce this fill 

But it’s not the same 

ordering as for 

parallelism 



Irregular mesh: NASA Airfoil in 2D (direct solution) 

02/01/2011 CS267 Lecture 5 38 



Irregular mesh and multigrid 

02/01/2011 CS267 Lecture 9 39 



Challenges of Irregular Meshes 

• How to generate them in the first place 

• Start from geometric description of object 

• Triangle, a 2D mesh partitioner by Jonathan Shewchuk 

• 3D harder! 

• How to partition them 

• ParMetis, a parallel graph partitioner 

• How to design iterative solvers 

• PETSc, a Portable Extensible Toolkit for Scientific 
Computing 

• Prometheus, a multigrid solver for finite element 
problems on irregular meshes 

• How to design direct solvers 

• SuperLU, parallel sparse Gaussian elimination 
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Discrete Event Systems 

• Systems are represented as: 

• finite set of variables. 

• the set of all variable values at a given time is called the state. 

• each variable is updated by computing a transition function 

depending on the other variables. 

• System may be: 

• synchronous: at each discrete timestep evaluate all transition 

functions; also called a state machine. 

• asynchronous: transition functions are evaluated only if the 

inputs change, based on an “event” from another part of the 

system; also called event driven simulation. 

• Example: The “game of life:”sharks and fish living in an 

ocean 

• breeding, eating, and death 

• forces in the ocean&between sea creatures 
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Parallelism in Game of Life  

• The simulation is synchronous 
• use two copies of the grid (old and new). 

• the value of each new grid cell depends  

only on 9 cells (itself plus 8 neighbors) in old grid. 

• simulation proceeds in timesteps-- each cell is updated at every step. 

• Easy to parallelize by dividing physical domain: Domain Decomposition 

 

 

 

 
 

 

• How to pick shapes of domains? 

 

 

P4 

P1 P2 P3 

P5 P6 

P7 P8 P9 

Repeat 

     compute locally to update local system 

     barrier() 

     exchange state info with neighbors 

until done simulating 
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Regular Meshes (e.g. Game of Life) 

• Suppose graph is nxn mesh with connection NSEW neighbors 

• Which partition has less communication? (n=18, p=9) 

n*(p-1) 

edge crossings 

2*n*(p1/2 –1) 

edge crossings 

• Minimizing communication on mesh   

minimizing “surface to volume ratio” of partition  
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Synchronous Circuit Simulation 

• Circuit is a graph made up of subcircuits connected by wires 

• Parallel algorithm is timing-driven or synchronous: 

• Evaluate all components at every timestep (determined by known circuit delay) 

• Graph partitioning assigns subgraphs to processors 

• Goal 1 is to evenly distribute subgraphs to nodes  (load balance). 

• Goal 2 is to minimize edge crossings (minimize communication). 

edge crossings = 6 edge crossings = 10 

better 
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Asynchronous Simulation 

• Synchronous simulations may waste time: 

• Simulates even when the inputs do not change,. 

• Asynchronous (event-driven) simulations update only 

when an event arrives from another component: 

• No global time steps, but individual events contain time stamp. 

• Example: Game of life in loosely connected ponds (don’t simulate 

empty ponds). 

• Example: Circuit simulation with delays (events are gates 

changing). 

• Example: Traffic simulation (events are cars changing lanes, etc.). 

• Asynchronous is more efficient, but harder to parallelize 

• In MPI, events are naturally implemented as messages, but how 

do you know when to execute a “receive”? 
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Particle Systems 

• A particle system has  

• a finite number of particles 

• moving in space according to Newton’s Laws (i.e. F = ma) 

• time is continuous  

• Examples 

• stars in space with laws of gravity 

• electron beam in semiconductor manufacturing 

• atoms in a molecule with electrostatic forces 

• neutrons in a fission reactor 

• cars on a freeway with Newton’s laws plus model of driver and 

engine 

• balls in a pinball game 
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Forces in Particle Systems 

• Force on each particle can be subdivided 

• External force 

• ocean current to sharks and fish world 

• externally imposed electric field in electron beam 

• Nearby force 

• sharks attracted to eat nearby fish 

• balls on a billiard table bounce off of each other 

• Far-field force 

• fish attract other fish by gravity-like (1/r^2 ) force 

• gravity, electrostatics, radiosity in graphics 

force   =   external_force   +   nearby_force   +   far_field_force 
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Example: Fish in an External Current 

%    fishp = array of initial fish positions (stored as complex numbers) 
%    fishv = array of initial fish velocities (stored as complex numbers) 
%    fishm = array of masses of fish 
%    tfinal = final time for simulation (0 = initial time) 
 
 
dt = .01;   t = 0; 
%  loop over time steps 
      while t < tfinal,  
         t = t + dt; 
         fishp = fishp + dt*fishv; 
         accel = current(fishp)./fishm;       % current depends on position 
         fishv = fishv + dt*accel; 
%      update time step (small enough to be accurate, but not too small) 
         dt = min(.1*max(abs(fishv))/max(abs(accel)),1); 
     end      
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Parallelism in External Forces 

• These are the simplest 

• The force on each particle is independent 

• Called “embarrassingly parallel” 

• Sometimes called “map reduce” by analogy 

 

 

• Evenly distribute particles on processors 

• Any distribution works 

• Locality is not an issue, no communication 

• For each particle on processor, apply the external force 

• May need to “reduce” (eg compute maximum) to compute time 

step, other data 
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Parallelism in Nearby Forces 

• Nearby forces require interaction and therefore 

communication. 

• Force may depend on other nearby particles: 

• Example: collisions. 

• simplest algorithm is O(n2): look at all pairs to see if they collide. 

• Usual parallel model is domain  decomposition of   

physical region in which particles are located 

•  O(n/p) particles per processor if evenly distributed. 
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Parallelism in Nearby Forces 

• Challenge 1: interactions of particles near processor 

boundary: 

• need to communicate particles near boundary to neighboring 

processors. 

• Region near boundary called “ghost zone” 

• Low surface to volume ratio means low communication. 

• Use squares, not slabs, to minimize ghost zone sizes 

Communicate particles in 

boundary region to neighbors 

Need to check for 

collisions between 

regions 
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Parallelism in Nearby Forces 

• Challenge 2: load imbalance, if particles cluster: 

• galaxies, electrons hitting a device wall. 

• To reduce load imbalance, divide space unevenly. 

• Each region contains roughly equal number of particles. 

• Quad-tree in 2D, oct-tree in 3D. 

Example: each square 

contains at most 3 

particles 
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Parallelism in Far-Field Forces 

• Far-field forces involve all-to-all interaction and therefore 

communication. 

• Force depends on all other particles: 

• Examples: gravity, protein folding 

• Simplest algorithm is O(n2) 

• Just decomposing space does not help since every particle 

needs to “visit” every other particle. 

 

 

 

 

 

• Use more clever algorithms to beat O(n2). 

Implement by rotating particle sets. 

• Keeps processors busy 

• All processor eventually see all 

particles 
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Far-field Forces: Particle-Mesh Methods 
• Based on approximation: 

• Superimpose a regular mesh. 

• “Move” particles to nearest grid point. 

• Exploit fact that the far-field force satisfies a PDE that is easy to 

solve on a regular mesh: 

• FFT, multigrid (described in future lectures) 

• Cost drops to O(n log n) or O(n) instead of O(n2) 

• Accuracy depends on the fineness of the grid is and the uniformity 

of the particle distribution. 

1) Particles are moved to nearby 

mesh points (scatter) 

2) Solve mesh problem 

3) Forces are interpolated at 

particles from mesh points 

(gather) 
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Far-field forces: Tree Decomposition 

• Based on approximation. 

• Forces from  group of far-away particles “simplified” -- 

resembles a single large particle. 

• Use tree; each node contains an approximation of descendants. 

• Also O(n log n) or O(n) instead of O(n2). 

• Several Algorithms 

• Barnes-Hut. 

• Fast multipole method (FMM)  

     of Greengard/Rohklin. 

• Anderson’s method. 

 

• Discussed in later lecture. 
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Summary of Particle Methods 

• Model contains discrete entities, namely, particles 

• Time is continuous – must be discretized to solve 

 

• Simulation follows particles through timesteps 

• Force =  external _force + nearby_force + far_field_force 

• All-pairs algorithm is simple, but inefficient, O(n2) 

• Particle-mesh methods approximates by moving particles to a 

regular mesh, where it is easier to compute forces 

• Tree-based algorithms approximate by treating set of particles 

as a group, when far away 

 

 

 

• May think of this as a special case of a “lumped” system 


