
1

CS240A: Parallelism in
CSE Applications

Tao Yang

Slides revised from James Demmel and Kathy Yelick

www.cs.berkeley.edu/~demmel/cs267_Spr11

CS267 Lecture 4 2

Category of CSE Simulation Applications

• Discrete event systems

• Time and space are discrete

• Particle systems

• Important special case of lumped systems

• Ordinary Differentiation Equations (ODEs)

• Location/entities are discrete, time is continuous

• Partial Differentiation Equations (PDEs)

• Time and space are continuous

discrete

continuous

CS267 Lecture 4 3

Basic Kinds of CSE Simulation
• Discrete event systems:

• “Game of Life,” Manufacturing systems, Finance, Circuits, Pacman

• Particle systems:

• Billiard balls, Galaxies, Atoms, Circuits, Pinball …

• Ordinary Differential Equations (ODEs),

• Lumped variables depending on continuous parameters

• system is “lumped” because we are not computing the voltage/current at

every point in space along a wire, just endpoints

• Structural mechanics, Chemical kinetics, Circuits,

Star Wars: The Force Unleashed

• Partial Differential Equations (PDEs)

• Continuous variables depending on continuous parameters

• Heat, Elasticity, Electrostatics, Finance, Circuits, Medical Image

Analysis, Terminator 3: Rise of the Machines

• For more on simulation in games, see

• www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD
http://www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

Table of Cotent

• ODE

• PDE

• Discrete Events and Particle Systems

Finite-Difference Method for
ODE/PDE

• Discretize domain of a function

• For each point in the discretized domain, name it with a

variable, setup equations.

• The unknown values of those points form equations.

Then solve these equations

Euler’s method for ODE
Initial-Value Problems

00 y)y(x);y,x(fy
dx

dy


x

0

x

1

x

2

x

3

y

0
h h h

Straight line approximation

Euler Method

  ' 2

nn1n hOyhyy 

  error),f(2

nnn1n hOwithyxhyy 

 2

nnn1n),f(hOyxhyy 

Thus starting from an initial value y0

      hxyhxyxy  /)(00
Approximate:

Then:

Example

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482

yx
dx

dy
   10 y

02.0h

)(),f(nnnnnn1n yxhyyxhyy 

ODE with boundary value

 http://numericalmethods.eng.usf.edu 9

"0030769.0)8(

,"0038731.0)5(

0
1

22

2







u

u

r

u

dr

ud

rdr

ud
8 5

Solution

 http://numericalmethods.eng.usf.edu 10

 2
11

2

2 2

x

yyy

dx

yd iii




 

Using the approximation of

 x

yy

dx

dy ii




 

2

11
and

   
0

2

12
2

11

2

11 







 

i

iii

i

iii

r

u

r

uu

rr

uuu

       
0

2

11121

2

1
122212
























































  i

i

i

i

i

i

u
rrr

u
rr

u
rrr

Gives you

Solution Cont

 http://numericalmethods.eng.usf.edu 11

5,0 0  ariStep 1 At node

0038731.00 u

Step 2 At node

Step 3 At node

"6.56.05,1 01  rrri

           
0

6.06.52

1

6.0

1

6.5

1

6.0

2

6.0

1

6.06.52

1
2212202





































 uuu

09266.25874.56290.2 210  uuu

,2i 2.66.06.512  rrr

     
0

6.02.62

1

6.0

1

2.6

1

6.0

2

6.0

1

6.02.62

1
3222212



























 uuu

09122.25816.56434.2 321  uuu

Solution Cont

 http://numericalmethods.eng.usf.edu 12

Step 4 At node ,3i 8.66.02.623  rrr

     
0

6.08.62

1

6.0

1

8.6

1

6.0

2

6.0

1

6.08.62

1
4232222



























 uuu

09003.25772.56552.2 432  uuu

Step 5 At node

Step 6 At node

,4i 4.76.08.634  rrr

       
0

6.04.72

1

6.0

1

4.7

1

6.0

2

6.0

1

6.04.72

1
5242232
































 uuu

08903.26062.56651.2 543  uuu

,5i 86.04.745  rrr

0030769.0/5  bruu

Solving system of equations

 http://numericalmethods.eng.usf.edu 13



































100000

8903.26062.56651.2000

09003.25772.56552.200

009122.25816.56434.20

0009266.25874.56290.2

000001



























5

4

3

2

1

0

u

u

u

u

u

u



























0030769.0

0

0

0

0

0038731.0

=

0038731.00 u

0036115.01 u

0034159.02 u

0032689.03 u

0031586.04 u

0030769.05 u
x x x

Graph and “stencil”

CS267 Lecture 4 15

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j) Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j)

for each row i

 for k=ptr[i] to ptr[i+1]-1 do

 y[i] = y[i] + val[k]*x[ind[k]]

Compressed Sparse Row (CSR) Format

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)×x(j)

for each row i

 for k=ptr[i] to ptr[i+1]-1 do

 y[i] = y[i] + val[k]*x[ind[k]]

A
y

x Representation of A

SpMV: y = y + A*x, only store, do arithmetic, on nonzero entries

CS267 Lecture 4 16

Parallel Sparse Matrix-vector multiplication

• y = A*x, where A is a sparse n x n matrix

• Questions

• which processors store

• y[i], x[i], and A[i,j]

• which processors compute

• y[i] = sum (from 1 to n) A[i,j] * x[j]

 = (row i of A) * x … a sparse dot product

• Partitioning

• Partition index set {1,…,n} = N1  N2  …  Np.

• For all i in Nk, Processor k stores y[i], x[i], and row i of A

• For all i in Nk, Processor k computes y[i] = (row i of A) * x

• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y

P1

P2

P3

P4

May require

communication

02/09/2010 CS267 Lecture 7 17

Matrix-processor mapping vs graph partitioning

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

• Relationship between matrix and graph

• A “good” partition of the graph has

• equal (weighted) number of nodes in each part (load and storage balance).

• minimum number of edges crossing between (minimize communication).

• Reorder the rows/columns by putting all nodes in one partition together.

3

6

1

5

4 2

CS267 Lecture 4 18

Matrix Reordering via Graph Partitioning

• “Ideal” matrix structure for parallelism: block diagonal

• p (number of processors) blocks, can all be computed locally.

• If no non-zeros outside these blocks, no communication needed

• Can we reorder the rows/columns to get close to this?

• Most nonzeros in diagonal blocks, few outside

P0

P1

P2

P3

P4

= *

P0 P1 P2 P3 P4

CS267 Lecture 4 19

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix:

• If divided over 3 procs, there are 14 nonzeros outside the diagonal

blocks, which represent the 7 (bidirectional) edges

4

CS267 Lecture 4 20

Goals of Reordering

• Performance goals

• balance load (how is load measured?).

• Approx equal number of nonzeros (not necessarily rows)

• balance storage (how much does each processor store?).

• Approx equal number of nonzeros

• minimize communication (how much is communicated?).

• Minimize nonzeros outside diagonal blocks

• Related optimization criterion is to move nonzeros near diagonal

• improve register and cache re-use

• Group nonzeros in small vertical blocks so source (x) elements

loaded into cache or registers may be reused (temporal locality)

• Group nonzeros in small horizontal blocks so nearby source (x)

elements in the cache may be used (spatial locality)

• Other algorithms reorder for other reasons

• Reduce # nonzeros in matrix after Gaussian elimination

• Improve numerical stability

Table of Cotent

• ODE

• PDE

• Discrete Events and Particle Systems

Solving PDEs

• Finite element method

• Finite difference method (our focus)
• Converts PDE into matrix equation

• Linear system over discrete basis elements

• Result is usually a sparse matrix

Class of Linear Second-order PDEs

• Linear second-order PDEs are of the form

 where A - H are functions of x and y only

• Elliptic PDEs: B2 - AC < 0
(steady state heat equations)

• Parabolic PDEs: B2 - AC = 0
(heat transfer equations)

• Hyperbolic PDEs: B2 - AC > 0
(wave equations)

HGuFuEuCuBuAu yxyyxyxx  2

Various 2D/3D heat distribution

2D Steady State Heat Distribution

80-100

60-80

40-60

20-40

0-20

Steam

Steam Steam

Ice bath

Solving the Heat Problem with PDE

• Underlying PDE is the Poisson equation

• This is an example of an elliptical PDE

• Will create a 2-D grid

• Each grid point represents value of state state solution
at particular (x, y) location in plate

),(yxfuu yyxx 

Discrete 2D grid space

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

2

)()(2)(
)(''

h

hxfxfhxf
xf




Finite-difference

• Assume f(x,y)=0

• Namely

0)2(
1

)2(
1

1,11,1,12

,1,,12









jijiji

jijiji

uuu
h

uuu
h

04 ,1,11,1,,   jijijijiji uuuuu

Matrx vs. graph representation

02/01/2011 CS267 Lecture 5 29

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L =

4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous

(7 point stencil)

Jacobi method for iterative solutions

For i=1 to n

 for j= 1 to n

 w[i][j] = (u[i-1][j] + u[i+1][j] +

 u[i][j-1] + u[i][j+1]) / 4.0;

Swap w and u

 u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

Start with initial values.

Iteratively update variables based on equations

Gauss Seidel Iterative Method

For i = 1, n

For j = 1, n

 u[i][j] = (u[i-1][j] + u[i+1][j] +

 u[i][j-1] + u[i][j+1]) / 4.0;

u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

u

Gauss-Seidel method for equation solving

02/01/2011 CS267 Lecture 5 32

(a) 2D dependence graph

(b) After red/black variable reordering

Different Dependence Patterns (Stencil)

Processor Partitioning in Regular meshes

• Computing a Stencil on a regular mesh

• need to communicate mesh points near boundary to

neighboring processors.

• Often done with ghost regions

• Surface-to-volume ratio keeps communication down, but

• Still may be problematic in practice

02/01/2011 CS267 Lecture 5 34

Implemented using

“ghost” regions.

Adds memory overhead

Composite mesh from a mechanical structure

02/01/2011 CS267 Lecture 5 35

Converting the mesh to a matrix

02/01/2011 CS267 Lecture 5 36

Example of Matrix Reordering Application

02/01/2011 CS267 Lecture 7 37

When performing

Gaussian Elimination

Zeros can be filled 

Matrix can be reordered

to reduce this fill

But it’s not the same

ordering as for

parallelism

Irregular mesh: NASA Airfoil in 2D (direct solution)

02/01/2011 CS267 Lecture 5 38

Irregular mesh and multigrid

02/01/2011 CS267 Lecture 9 39

Challenges of Irregular Meshes

• How to generate them in the first place

• Start from geometric description of object

• Triangle, a 2D mesh partitioner by Jonathan Shewchuk

• 3D harder!

• How to partition them

• ParMetis, a parallel graph partitioner

• How to design iterative solvers

• PETSc, a Portable Extensible Toolkit for Scientific
Computing

• Prometheus, a multigrid solver for finite element
problems on irregular meshes

• How to design direct solvers

• SuperLU, parallel sparse Gaussian elimination

02/01/2011 CS267 Lecture 5 40

Table of Cotent

• ODE

• PDE

• Discrete Events and Particle Systems

CS267 Lecture 4 42

Discrete Event Systems

• Systems are represented as:

• finite set of variables.

• the set of all variable values at a given time is called the state.

• each variable is updated by computing a transition function

depending on the other variables.

• System may be:

• synchronous: at each discrete timestep evaluate all transition

functions; also called a state machine.

• asynchronous: transition functions are evaluated only if the

inputs change, based on an “event” from another part of the

system; also called event driven simulation.

• Example: The “game of life:”sharks and fish living in an

ocean

• breeding, eating, and death

• forces in the ocean&between sea creatures

CS267 Lecture 4 43

Parallelism in Game of Life

• The simulation is synchronous
• use two copies of the grid (old and new).

• the value of each new grid cell depends

only on 9 cells (itself plus 8 neighbors) in old grid.

• simulation proceeds in timesteps-- each cell is updated at every step.

• Easy to parallelize by dividing physical domain: Domain Decomposition

• How to pick shapes of domains?

P4

P1 P2 P3

P5 P6

P7 P8 P9

Repeat

 compute locally to update local system

 barrier()

 exchange state info with neighbors

until done simulating

CS267 Lecture 4 44

Regular Meshes (e.g. Game of Life)

• Suppose graph is nxn mesh with connection NSEW neighbors

• Which partition has less communication? (n=18, p=9)

n*(p-1)

edge crossings

2*n*(p1/2 –1)

edge crossings

• Minimizing communication on mesh 

minimizing “surface to volume ratio” of partition

CS267 Lecture 4 45

Synchronous Circuit Simulation

• Circuit is a graph made up of subcircuits connected by wires

• Parallel algorithm is timing-driven or synchronous:

• Evaluate all components at every timestep (determined by known circuit delay)

• Graph partitioning assigns subgraphs to processors

• Goal 1 is to evenly distribute subgraphs to nodes (load balance).

• Goal 2 is to minimize edge crossings (minimize communication).

edge crossings = 6 edge crossings = 10

better

CS267 Lecture 4 46

Asynchronous Simulation

• Synchronous simulations may waste time:

• Simulates even when the inputs do not change,.

• Asynchronous (event-driven) simulations update only

when an event arrives from another component:

• No global time steps, but individual events contain time stamp.

• Example: Game of life in loosely connected ponds (don’t simulate

empty ponds).

• Example: Circuit simulation with delays (events are gates

changing).

• Example: Traffic simulation (events are cars changing lanes, etc.).

• Asynchronous is more efficient, but harder to parallelize

• In MPI, events are naturally implemented as messages, but how

do you know when to execute a “receive”?

CS267 Lecture 4 47

Particle Systems

• A particle system has

• a finite number of particles

• moving in space according to Newton’s Laws (i.e. F = ma)

• time is continuous

• Examples

• stars in space with laws of gravity

• electron beam in semiconductor manufacturing

• atoms in a molecule with electrostatic forces

• neutrons in a fission reactor

• cars on a freeway with Newton’s laws plus model of driver and

engine

• balls in a pinball game

CS267 Lecture 4 48

Forces in Particle Systems

• Force on each particle can be subdivided

• External force

• ocean current to sharks and fish world

• externally imposed electric field in electron beam

• Nearby force

• sharks attracted to eat nearby fish

• balls on a billiard table bounce off of each other

• Far-field force

• fish attract other fish by gravity-like (1/r^2) force

• gravity, electrostatics, radiosity in graphics

force = external_force + nearby_force + far_field_force

CS267 Lecture 4 49

Example: Fish in an External Current

% fishp = array of initial fish positions (stored as complex numbers)
% fishv = array of initial fish velocities (stored as complex numbers)
% fishm = array of masses of fish
% tfinal = final time for simulation (0 = initial time)

dt = .01; t = 0;
% loop over time steps
 while t < tfinal,
 t = t + dt;
 fishp = fishp + dt*fishv;
 accel = current(fishp)./fishm; % current depends on position
 fishv = fishv + dt*accel;
% update time step (small enough to be accurate, but not too small)
 dt = min(.1*max(abs(fishv))/max(abs(accel)),1);
 end

CS267 Lecture 4 50

Parallelism in External Forces

• These are the simplest

• The force on each particle is independent

• Called “embarrassingly parallel”

• Sometimes called “map reduce” by analogy

• Evenly distribute particles on processors

• Any distribution works

• Locality is not an issue, no communication

• For each particle on processor, apply the external force

• May need to “reduce” (eg compute maximum) to compute time

step, other data

CS267 Lecture 4 51

Parallelism in Nearby Forces

• Nearby forces require interaction and therefore

communication.

• Force may depend on other nearby particles:

• Example: collisions.

• simplest algorithm is O(n2): look at all pairs to see if they collide.

• Usual parallel model is domain decomposition of

physical region in which particles are located

• O(n/p) particles per processor if evenly distributed.

CS267 Lecture 4 52

Parallelism in Nearby Forces

• Challenge 1: interactions of particles near processor

boundary:

• need to communicate particles near boundary to neighboring

processors.

• Region near boundary called “ghost zone”

• Low surface to volume ratio means low communication.

• Use squares, not slabs, to minimize ghost zone sizes

Communicate particles in

boundary region to neighbors

Need to check for

collisions between

regions

CS267 Lecture 4 53

Parallelism in Nearby Forces

• Challenge 2: load imbalance, if particles cluster:

• galaxies, electrons hitting a device wall.

• To reduce load imbalance, divide space unevenly.

• Each region contains roughly equal number of particles.

• Quad-tree in 2D, oct-tree in 3D.

Example: each square

contains at most 3

particles

CS267 Lecture 4 54

Parallelism in Far-Field Forces

• Far-field forces involve all-to-all interaction and therefore

communication.

• Force depends on all other particles:

• Examples: gravity, protein folding

• Simplest algorithm is O(n2)

• Just decomposing space does not help since every particle

needs to “visit” every other particle.

• Use more clever algorithms to beat O(n2).

Implement by rotating particle sets.

• Keeps processors busy

• All processor eventually see all

particles

CS267 Lecture 4 55

Far-field Forces: Particle-Mesh Methods
• Based on approximation:

• Superimpose a regular mesh.

• “Move” particles to nearest grid point.

• Exploit fact that the far-field force satisfies a PDE that is easy to

solve on a regular mesh:

• FFT, multigrid (described in future lectures)

• Cost drops to O(n log n) or O(n) instead of O(n2)

• Accuracy depends on the fineness of the grid is and the uniformity

of the particle distribution.

1) Particles are moved to nearby

mesh points (scatter)

2) Solve mesh problem

3) Forces are interpolated at

particles from mesh points

(gather)

CS267 Lecture 4 56

Far-field forces: Tree Decomposition

• Based on approximation.

• Forces from group of far-away particles “simplified” --

resembles a single large particle.

• Use tree; each node contains an approximation of descendants.

• Also O(n log n) or O(n) instead of O(n2).

• Several Algorithms

• Barnes-Hut.

• Fast multipole method (FMM)

 of Greengard/Rohklin.

• Anderson’s method.

• Discussed in later lecture.

CS267 Lecture 4 57

Summary of Particle Methods

• Model contains discrete entities, namely, particles

• Time is continuous – must be discretized to solve

• Simulation follows particles through timesteps

• Force = external _force + nearby_force + far_field_force

• All-pairs algorithm is simple, but inefficient, O(n2)

• Particle-mesh methods approximates by moving particles to a

regular mesh, where it is easier to compute forces

• Tree-based algorithms approximate by treating set of particles

as a group, when far away

• May think of this as a special case of a “lumped” system

