
CS267 Lecture 6 1

Shared Memory
Hardware

and
Memory

Consistency

Modified from J. Demmel and K. Yelick
http://www.cs.berkeley.edu/~demmel/cs267_Spr11/

http://www.cs.berkeley.edu/~demmel/cs267_Spr10/

02/03/2011 CS267 Lecture 6 2

Basic Shared Memory Architecture

• Processors all connected to a large shared memory

• Where are caches?

• Now take a closer look at structure, costs, limits,

programming

P1

interconnect

memory

P2 Pn

02/03/2011 3

Memory Hierarchy

• Most programs have a high degree of locality in their accesses

• spatial locality: accessing things nearby previous accesses

• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

on-chip

cache
registers

datapath

control

processor

Second

level

cache

(SRAM)

Main

memory

(DRAM)

Secondary

storage

(Disk)

Latency 1ns 10ns 100ns 10ms

Size KB MB GB TB

02/03/2011 Slide source: John Kubiatowicz

Caching in Shared Memory Multiprocessors

• Want High performance for shared memory: Use Caches!

• Each processor has its own cache (or multiple caches)

• Place data from memory into cache

• Writeback cache: don’t send all writes over bus to memory

• Caches Reduce average latency

• Automatic replication closer to processor

• More important to multiprocessor than uniprocessor: latencies longer

• Normal uniprocessor mechanisms to access data

• Loads and Stores form very low-overhead communication primitive

• Problem: Cache Coherence!

I/O devices Mem

P 1

$ $

P n

Bus

02/03/2011

Example Cache Coherence Problem

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

• Processors could see different values for u after event 3

• How to fix with a bus: Coherence Protocol
• Use bus to broadcast writes or invalidations

• Bus not scalable beyond about 64 processors (max)
• Capacity, bandwidth limitations

Slide source: John Kubiatowicz

02/03/2011 CS267 Lecture 6 6

Another example: Cache Coherence

• Coherence means different copies of same location have same

value, incoherent otherwise:

• p1 and p2 both have cached copies of data (= 0)

• p1 writes data=1

• May “write through” to memory

• p2 reads data, but gets the “stale” cached copy

• This may happen even if it read an updated value of another

variable, flag, that came from memory

data 0 data 0

data = 0

p1 p2

data 1

02/03/2011 CS267 Lecture 6 7

Snoopy Cache-Coherence Protocols

• Memory bus is a broadcast medium

• Caches contain information on which addresses they store

• Cache Controller “snoops” all transactions on the bus

• A transaction is a relevant transaction if it involves a cache block currently

contained in this cache

• Take action to ensure coherence

• invalidate, update, or supply value

• Many possible designs

• Not scalable for a large number of processors

State

Address

Data
P0

$ $

Pn

Mem Mem

memory bus
memory op from Pn

bus snoop

02/03/2011 CS267 Lecture 6 8

Directory Based Memory/Cache Coherence

• Keep Directory to keep track of which memory stores latest

copy of data

• Directory, like cache, may keep information such as:

• Valid/invalid

• Dirty (inconsistent with memory)

• Shared (in another caches)

• When a processor executes a write operation to shared

data, basic design choices are:

• With respect to memory:

• Write through cache: do the write in memory as well as cache

• Write back cache: wait and do the write later, when the item is flushed

• With respect to other cached copies

• Update: give all other processors the new value

• Invalidate: all other processors remove from cache

02/03/2011

Scalable Shared Memory: Directories

• Every memory block has associated directory information
• keeps track of copies of cached blocks and their states

• on a miss, find directory entry, look it up, and communicate only with the nodes that

have copies if necessary

• in scalable networks, communication with directory and copies is through network

transactions

• Each Reader recorded in directory

• Processor asks permission of memory before writing:
• Send invalidation to each cache with read-only copy

• Wait for acknowledgements before returning permission for writes

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Me mory Directory

pres ence bits dirty bit

Interconnection Netw ork

Slide source: John Kubiatowicz

02/03/2011 CS267 Lecture 6 10

Intuitive Memory Model

• Reading an address should return the last
value written to that address

• Easy in uniprocessors
• except for I/O

• Cache coherence problem in MPs is more
pervasive and more performance critical

• More formally, this is called sequential
consistency:

 “A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program.” [Lamport, 1979]

02/03/2011 CS267 Lecture 6 11

Sequential Consistency Intuition

• Sequential consistency says the machine behaves as if

it does the following

memory

P0 P1 P2 P3

02/03/2011

LD1 A 5

LD2 B 7

LD5 B 2

ST1 A,6

LD6 A 6

ST4 B,21

LD3 A 6

LD4 B 21

LD7 A 6

ST2 B,13

ST3 B,4

LD8 B 4

Sequential Consistency Example

LD1 A 5

LD2 B 7

ST1 A,6

 …

LD3 A 6

LD4 B 21

ST2 B,13

ST3 B,4

LD5 B 2

 …

LD6 A 6

ST4 B,21

 …

LD7 A 6

 …

LD8 B 4

Processor 1 Processor 2 One Consistent Serial Order

Slide source: John Kubiatowicz

02/03/2011 CS267 Lecture 6 13

Memory Consistency Semantics

What does this imply about program behavior?

• No process ever sees “garbage” values, i.e., average of 2 values

• Processors always see values written by some processor

• The value seen is constrained by program order on all

processors

• Time always moves forward

• Example: spin lock

• P1 writes data=1, then writes flag=1

• P2 waits until flag=1, then reads data

If P2 sees the new value of

flag (=1), it must see the

new value of data (=1)

initially: flag=0

 data=0

data = 1

flag = 1
While flag=0;

print data

P1 P2

If P2

reads flag

Then P2 may

read data

0 1

0 0

1 1

02/03/2011 CS267 Lecture 6 14

Cache Coherence and Sequential Consistency

• There is a lot of hardware/work to ensure coherent caches

• Never more than 1 version of data for a given address in caches

• But other HW/SW features may break sequential consistency (SC):

• The compiler reorders/removes code (e.g., your spin lock, see

previous slide)

• Write buffers (place to store writes while waiting to complete)

• Processors may reorder writes to merge addresses (not

FIFO)

• Write X=1, Y=1, X=2 (second write to X may happen before

Y’s)

• Prefetch instructions cause read reordering (read data before

flag)

• The network reorders the two write messages.

• The write to flag is nearby, whereas data is far away.

• Some commercial systems give up SC

• A correct program on a SC processor may be incorrect on one

that is not

02/03/2011 CS267 Lecture 6

Performance Issue in True Sharing

• True sharing

• Frequent writes to a variable can create a

bottleneck

• OK for read-only or infrequently written data

• Example problem: the data structure that

stores the freelist/heap for malloc/free

• Technique:

• Make copies of the value, one per processor,

if this is possible in the algorithm

X Y

X=0 X=X*2 C=X+Z

Cache line

02/03/2011 CS267 Lecture 6

Performance Issue with False Sharing

• False sharing

• Cache block may also introduce artifacts

• Two distinct variables in the same cache block

• Example problem: an array of ints, one written

frequently by each processor (many ints per cache

line)

• Technique:

• allocate data used by each processor

contiguously, or at least avoid interleaving in

memory

X Y

X=0 Y=0 Z=Y+1

Cache line

02/03/2011 CS267 Lecture 6 17

Programming with Weaker Memory Models than SC

• Possible to reason about machines with fewer
properties, but difficult

• Some rules for programming with these models
• Avoid race conditions

• Use system-provided synchronization primitives

• At the assembly level, may use “fences” (memory
barrier) directly

• The high level language support for these differs
• Built-in synchronization primitives normally include the

necessary fence operations
• lock (), … only one thread at a time allowed here…. unlock()

• Region between lock/unlock called critical region

• For performance, need to keep critical region short

02/03/2011 CS267 Lecture 6 18

What to Take Away?

• Programming shared memory machines

• May allocate data in large shared region without too many

worries about where

• Memory hierarchy is critical to performance

• Even more so than on uniprocessors, due to coherence traffic

• For performance tuning, watch sharing (both true and false)

• Semantics

• Need to lock access to shared variable for read-modify-write

• Sequential consistency is the natural semantics

• Write race-free programs to get this

• Architects worked hard to make this work

• Caches are coherent with buses or directories

• No caching of remote data on shared address space machines

• But compiler and processor may still get in the way

• Non-blocking writes, read prefetching, code motion…

• Avoid races or use machine-specific fences carefully

