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Basic Shared Memory Architecture 

• Processors all connected to a large shared memory 

• Where are caches? 

 

• Now take a closer look at structure, costs, limits, 

programming 
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Memory Hierarchy 

• Most programs have a high degree of locality in their accesses 

• spatial locality: accessing things nearby previous accesses 

• temporal locality: reusing an item that was previously accessed 

• Memory hierarchy tries to exploit locality to improve average 
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Caching in Shared Memory Multiprocessors 

• Want High performance for shared memory: Use Caches! 

• Each processor has its own cache (or multiple caches) 

• Place data from memory into cache 

• Writeback cache: don’t send all writes over bus to memory 

• Caches Reduce average latency 

• Automatic replication closer to processor 

• More important to multiprocessor than uniprocessor: latencies longer 

• Normal uniprocessor mechanisms to access data 

• Loads and Stores form very low-overhead communication primitive 

• Problem: Cache Coherence! 
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Example Cache Coherence Problem 

I/O devices 
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• Processors could see different values for u after event 3 

• How to fix with a bus: Coherence Protocol 
• Use bus to broadcast writes or invalidations 

• Bus not scalable beyond about 64 processors (max) 
• Capacity, bandwidth limitations 

Slide source: John Kubiatowicz 
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Another example: Cache Coherence 

• Coherence means different copies of same location have same 

value, incoherent otherwise: 

• p1 and p2 both have cached copies of data (= 0) 

• p1 writes data=1  

• May  “write through” to memory 

• p2 reads data, but gets the “stale” cached copy 

• This may happen even if it read an updated value of another 

variable, flag, that came from memory 

data  0 data  0 

data = 0 

p1 p2 
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Snoopy Cache-Coherence Protocols 

• Memory bus is a broadcast medium 

• Caches contain information on which addresses they store 

• Cache Controller “snoops” all transactions on the bus 

• A transaction is a relevant transaction if it involves a cache block currently 

contained in this cache 

• Take action to ensure coherence 

• invalidate, update, or supply value 

• Many possible designs 

• Not scalable for a large number of processors 
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Directory Based Memory/Cache Coherence 

• Keep Directory to keep track of which memory stores latest 

copy of data 

• Directory, like cache, may keep information such as: 

• Valid/invalid 

• Dirty (inconsistent with memory) 

• Shared (in another caches) 

• When a processor executes a write operation to shared 

data, basic design choices are: 

• With respect to memory: 

• Write through cache: do the write in memory as well as cache 

• Write back cache: wait and do the write later, when the item is flushed 

• With respect to other cached copies 

• Update: give all other processors the new value 

• Invalidate: all other processors remove from cache 
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Scalable Shared Memory: Directories 

• Every memory block has associated directory information 
• keeps track of copies of cached blocks and their states 

• on a miss, find directory entry, look it up, and communicate only with the nodes that 

have copies if necessary 

• in scalable networks, communication with directory and copies is through network 

transactions 

• Each Reader recorded in directory 

• Processor asks permission of memory before writing: 
• Send invalidation to each cache with read-only copy 

• Wait for acknowledgements before returning permission for writes 

  

•  k processors.   

•  With each cache-block in memory:  
k  presence-bits, 1 dirty-bit 

•  With each cache-block in cache:     
1 valid bit, and 1 dirty (owner) bit • ••

P P
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Slide source: John Kubiatowicz 
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Intuitive Memory Model 

• Reading an address should return the last 
value written to that address 

• Easy in uniprocessors 
• except for I/O 

• Cache coherence problem in MPs is more 
pervasive and more performance critical 

• More formally, this is called sequential 
consistency: 

 “A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all 
the processors were executed in some sequential 
order, and the operations of each individual processor 
appear in this sequence in the order specified by its 
program.” [Lamport, 1979] 
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Sequential Consistency Intuition 

• Sequential consistency says the machine behaves as if 

it does the following 

memory 

P0 P1 P2 P3 
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LD1 A  5 

LD2 B  7 

LD5 B  2 

ST1 A,6 

LD6 A  6 

ST4 B,21 

LD3 A  6 

LD4 B  21 

LD7 A  6 

ST2 B,13 

ST3 B,4 

LD8 B  4 

 

Sequential Consistency Example 

LD1 A   5 

LD2 B  7 

ST1 A,6 

 … 

LD3 A  6 

LD4 B  21 

ST2 B,13 

ST3 B,4 

 

LD5 B  2 

 … 

LD6 A  6 

ST4 B,21 

 … 

LD7 A  6 

 … 

LD8 B  4 

 

Processor 1 Processor 2 One Consistent Serial Order 

Slide source: John Kubiatowicz 
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Memory Consistency Semantics 

What does this imply about program behavior? 

• No process ever sees “garbage” values, i.e., average of 2 values 

• Processors always see values written by some processor 

• The value seen is constrained by program order on all 

processors 

• Time always moves forward 

• Example: spin lock 

• P1 writes data=1, then writes flag=1 

• P2 waits until flag=1, then reads data 

If P2 sees the new value of 

flag (=1), it must see the 

new value of data (=1) 

initially:     flag=0 

                  data=0 

data = 1 

flag = 1 
While flag=0; 

print  data 

P1 P2 

If P2 

reads flag 

Then P2 may 

read data 

0 1 

0 0 

1 1 
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Cache Coherence and Sequential Consistency 

• There is a lot of hardware/work to ensure coherent caches 

• Never more than 1 version of data for a given address in caches 

• But other HW/SW features may break sequential consistency (SC): 

• The compiler reorders/removes code (e.g., your spin lock, see 

previous slide) 

• Write buffers (place to store writes while waiting to complete) 

• Processors may reorder writes to merge addresses (not 

FIFO) 

• Write X=1, Y=1, X=2 (second write to X may happen before 

Y’s) 

• Prefetch instructions cause read reordering (read data before 

flag) 

• The network reorders the two write messages.  

•  The write to flag is nearby, whereas data is far away. 

• Some commercial systems give up SC 

• A correct program on a SC processor may be incorrect on one 

that is not 
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Performance Issue in True Sharing 

• True sharing 

• Frequent writes to a variable can create a 

bottleneck 

• OK for read-only or infrequently written data 

• Example problem: the data structure that 

stores the freelist/heap for malloc/free 

• Technique:  

• Make copies of the value, one per processor, 

if this is possible in the algorithm 

X   Y 

X=0 X=X*2 C=X+Z 

Cache line 
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Performance Issue with False Sharing 

• False sharing 

• Cache block may also introduce artifacts 

• Two distinct variables in the same cache block 

• Example problem: an array of ints, one written 

frequently by each processor (many ints per cache 

line) 

• Technique:  

• allocate data used by each processor 

contiguously, or at least avoid interleaving in 

memory 

X   Y 

X=0 Y=0 Z=Y+1 

Cache line 
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Programming with Weaker Memory Models than SC 

• Possible to reason about machines with fewer 
properties, but difficult 

• Some rules for programming with these models 
• Avoid race conditions 

• Use system-provided synchronization primitives 

• At the assembly level, may use “fences” (memory 
barrier) directly 

• The high level language support for these differs 
• Built-in synchronization primitives normally include the 

necessary fence operations 
• lock (),  … only one thread at a time allowed here…. unlock() 

• Region between lock/unlock called critical region 

• For performance, need to keep critical region short 
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What to Take Away? 

• Programming shared memory machines 

• May allocate data in large shared region without too many 

worries about where 

• Memory hierarchy is critical to performance  

• Even more so than on uniprocessors, due to coherence traffic 

• For performance tuning, watch sharing (both true and false) 

• Semantics 

• Need to lock access to shared variable for read-modify-write 

• Sequential consistency is the natural semantics 

• Write race-free programs to get this 

• Architects worked hard to make this work 

• Caches are coherent with buses or directories 

• No caching of remote data on shared address space machines 

• But compiler and processor may still get in the way 

• Non-blocking writes, read prefetching, code motion… 

• Avoid races or use machine-specific fences carefully 


