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Recap of Last Lecture

« Shared memory multiprocessors

« Caches may be either shared or distributed.
« Multicore chips are likely to have shared caches

« Cache hit performance is better if they are distributed
(each cache is smaller/closer) but they must be kept
coherent -- multiple cached copies of same location must
be kept equal.

* Requires clever hardware.
 Distant memory much more expensive to access.
« Machines scale to 10s or 100s of processors.

« Shared memory programming
e Starting, stopping threads.
« Communication by reading/writing shared variables.
« Synchronization with locks, barriers.

02/8/2011 CS267 Lecture 7 2



Architectures (TOP50

0
. -

Q O

£ =
o 2
= cS §
n n n O
H OO B Bn

o o
™ N

swajsAg

M Cluster
= MPP

0L0¢
600¢
800¢
,00¢
900¢
G00c
¥00¢
€00¢
¢00¢
1002
000¢
6661
8661
L661
9661
G661
v661
€661

02/8/2011



Qutline

* Distributed Memory Architectures
* Properties of communication networks
* Topologies
* Performance models
* Programming Distributed Memory Machines
using Message Passing
* Overview of MPI
 Basic send/receive use
* Non-blocking communication
* Collectives
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Historical Perspective

« Early distributed memory machines were:
 Collection of microprocessors.

« Communication was performed using bi-directional queues
between nearest neighbors.

« Messages were forwarded by processors on path.
» “Store and forward” networking

* There was a strong emphasis on topology in algorithms,
In order to minimize the number of hops = minimize time
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Network Analogy

* To have a large number of different transfers occurring at
once, you need a large number of distinct wires
* Not just a bus, as in shared memory

* Networks are like streets:
* Link = street.
« Switch = intersection.
* Distances (hops) = number of blocks traveled.
* Routing algorithm = travel plan.
* Properties:
 Latency: how long to get between nodes in the network.

« Bandwidth: how much data can be moved per unit time.

« Bandwidth is limited by the number of wires and the rate at
which each wire can accept data.
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Design Characteristics of a Network

* Topology (how things are connected)

 Crossbar, ring, 2-D and 3-D mesh or torus,
hypercube, tree, butterfly, perfect shuffle ....

* Routing algorithm:
« Switching strategy:

« Circuit switching: full path reserved for entire
message, like the telephone.

» Packet switching: message broken into separately-
routed packets, like the post office.

* Flow control (what if there is congestion):

e Stall, store data temporarily in buffers, re-route data
to other nodes, tell source node to temporarily halt,
discard, etc.
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_Performance Properties of a Network: Latency

« Diameter: the maximum (over all pairs of nodes) of the
shortest path between a given pair of nodes.

- Latency: delay between send and receive times
 Latency tends to vary widely across architectures
* Vendors often report hardware latencies (wire time)

 Application programmers care about software
latencies (user program to user program)

» Observations:
* Latencies differ by 1-2 orders across network designs

« Software/hardware overhead at source/destination
dominate cost (1s-10s usecs)

« Hardware latency varies with distance (10s-100s nsec
per hop) but is small compared to overheads

 Latency is key for programs with many small messages
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Latency on Some Recent Machines/Networks

8-byte F\Z’ggndtrlp Latency

B MPI ping-pong
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Elan3/Alpha Elan4/I1A64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

 Latencies shown are from a ping-pong test using MPI

« These are roundtrip numbers: many people use Y2 of roundtrip time
to approximate 1-way latency (which can’t easily be measured)
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End to End Latency (1/2 roundtrip) Over Time
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 Latency has not improved significantly, unlike Moore’s Law

« T3E (shmem) was lowest point — in 1997
Data from Kathy Yelick, UCB and NERSC
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Performance Properties of a Network: Bandwidth

* The bandwidth of a link = # wires / time-per-bit

« Bandwidth typically in Gigabytes/sec (GB/s),
l.e., 8* 220 bits per second

- Effective bandwidth is usually lower than physical link
bandwidth due to packet overhead.

Routing
and control
header

« Bandwidth is important for applications
with mostly large messages e oad

Error code

Trailer
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Bandwidth on Existing Networks

Flood Bandwidth for 2MB messages
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* Flood bandwidth (throughput of back-to-back 2MB messages)
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Bandwidth (MB/sec)

Bandwidth Chart

Note: bandwidth depends on SW, not just HW
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Performance Properties of a Network: Bisection Bandwidth

* Bisection bandwidth: bandwidth across smallest cut that
divides network into two equal halves

« Bandwidth across “narrowest” part of the network

@
not a
- == DiSection
bisection cut
cut= =t = = = = = = -
bisection bw=link bw bisection bw = sqrt(n) * link bw

* Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others
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Network Topology

* In the past, there was considerable research in network
topology and in mapping algorithms to topology.

« Key cost to be minimized: number of “hops” between
nodes (e.g. “store and forward”)

* Modern networks hide hop cost (i.e., “wormhole
routing”), so topology is no longer a major factor in
algorithm performance.

« Example: On IBM SP system, hardware latency varies
from 0.5 usec to 1.5 usec, but user-level message
passing latency is roughly 36 usec.

* Need some background in network topology
 Algorithms may have a communication topology
* Topology affects bisection bandwidth.
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Linear and Ring Topologies

* Linear array
o—9o o 0o 0o o oo

e Diameter = n-1,; average distance ~n/3.
* Bisection bandwidth = 1 (in units of link bandwidth).
 Torus or Ring

e et oe,
® ® ®
r ® ® ® QJ
* Diameter = n/2; average distance ~ n/4.

* Bisection bandwidth = 2.
 Natural for algorithms that work with 1D arrays.
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Meshes and Torl

Two dimensional mesh Two dimensional torus
* Diameter =2 * (sqrt(n ) —1) * Diameter = sqgrt(n)
* Bisection bandwidth = sqrt(n) e« Bisection bandwidth = 2* sqgrt(n)

—_—— CDQ —
—_—— b =t 1
—_—— b=t —
—_—— b=t — — — —
—_—— ot —
o6 o oo <E’ e \/. o

« Generalizes to higher dimensions
* Cray XT (eg Franklin@NERSC) uses 3D Torus

« Natural for algorithms that work with 2D and/or 3D arrays (matmul)
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Hypercubes

« Number of nodes n = 29 for dimension d.
 Diameter = d.
* Bisection bandwidth = n/2.

e P
2d 3d

* Od 1d

4d

» Popular in early machines (Intel IPSC, NCUBE).

* Lots of clever algorithms.
« See 1996 online CS267 notes. ”

» Greycode addressing: 10 101

 Each node connected to

d others with 1 bit different.
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Trees

* Diameter = log n.

* Bisection bandwidth = 1.
« Easy layout as planar graph.
« Many tree algorithms (e.g., summation).

* Fat trees avoid bisection bandwidth problem:
« More (or wider) links near top.
« Example: Thinking Machines CM-5.
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Butterflies

* Diameter = log n.

 Bisection bandwidth = n.
_ _ Ex: to get from proc 101 to 110,
« Used in BBN Bultterfly. Switch if they disagree, else not

 Natural for FFT.

1T T 1
o ¢

butterfly switch

)@

multistage butterfly network
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_Topologies in Real Machines

Cray XT3 and XT4 3D Torus (approx)
Blue Gene/L 3D Torus
SGI Altix Fat tree
C Cray X1 4D Hypercube*
&
% Myricom (Millennium) Arbitrary
-
_ Quadrics (in HP Alpha Fat tree
% server clusters)
IS IBM SP Fat tree (approx) Many of these are
.. approximations:
SGI Origin Hypercube E.g., the X1 isreally a
“‘quad bristled
Intel Paragon (old) 2D Mesh hypercube” and some
of the fat trees are
BBN Butterfly (really old) | Butterfly not as fat as they
should be at the top
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Performance
Models

CS267 Lecture 7
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Latency and Bandwidth Model

* Time to send message of length n is roughly

Time = latency + n*cost_per_word
= latency + n/bandwidth

« Topology is assumed irrelevant.
 Often called “o—3 model” and written
Time=a +n*p
» Usually a >> 3 >> time per flop.
* One long message is cheaper than many short ones.

o+ nN*p << n¥(a+ 1*P)

« Can do hundreds or thousands of flops for cost of one message.

* Lesson: Need large computation-to-communication ratio
to be efficient.
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Alpha-Beta Parameters on Current Machines

* These numbers were obtained empirically

machine o B

T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267| 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MP1 7.2 0.006
Dolphin/MPI 7.767| 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GIigE/MPI 5.854| 0.00872

02/8/2011
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o is latency in usecs
Bis BWin usecs per Byte

How well does the model
Time =a + n*p
predict actual performance?
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——Model Time Varying Message Size & Machines —

Sum of model
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_Measured Message Time
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LogP Parameters: Overhead & Latency

« Non-overlapping « Send and recv overhead
overhead can overlap
Osend —.
L Ogend
c)I‘GCV Orecv

A\ 4

EEL = End-to-End Latency  EEL = (0,4, L, Oyec)

=0 +L+0 2 max(osenw L, Orec:v)

send recv
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LogP Parameters: ga
* The Gap is the delay between sending
messages
« Gap could be greater than send overhead .

* NIC may be busy finishing the
processing of last message and gap
cannot accept a new one.

* Flow control or backpressure on the gap
network may prevent the NIC from
accepting the next message to send.

* No overlap =
time to send n messages (pipelined) =

(Osend +L+ Orecv - gap) + n*gap =0t II*B
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Results: EEL and Overhead

25

20

15 B

usec

Send Overhead (alone) B Send & Rec Overhead B Rec Overhead (alone) O Added Latency

Data from Mike Welcome, NERSC
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Send Overhead Over Time
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« Overhead has not improved significantly; T3D was best

02/8/2011

» Lack of integration; lack of attention in software

Data from Kathy Yelick, UCB and NERSC
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Limitations of the LogP Model

* The LogP model has a fixed cost for each message
 This is useful in showing how to quickly broadcast a single word
» Other examples also in the LogP papers

 For larger messages, there is a variation LogGP
« Two gap parameters, one for small and one for large messages
* The large message gap is the 3 in our previous model
* No topology considerations (including no limits for
bisection bandwidth)

« Assumes a fully connected network

* OK for some algorithms with nearest neighbor communication,
but with “all-to-all” communication we need to refine this further

* This is a flat model, i.e., each processor is connected to
the network
 Clusters of multicores are not accurately modeled
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Programming
Distributed Memory Machines
with
Message Passing

Slides from
Jonathan Carter (jtcarter@lbl.gov),
Katherine Yelick (yelick@cs.berkeley.edu),
Bill Gropp (wgropp@illinois.edu)
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Message Passing Libraries (1)

* Many “message passing libraries” were once available
« Chameleon, from ANL.

CMMD, from Thinking Machines.

Express, commercial.

MPL, native library on IBM SP-2.

NX, native library on Intel Paragon.

Zipcode, from LLL.

PVM, Parallel Virtual Machine, public, from ORNL/UTK.

 Others...

« MPI, Message Passing Interface, now the industry standard.

* Need standards to write portable code.

02/8/2011 CS267 Lecture 7
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Message Passing Libraries (2)

 All communication, synchronization require subroutine calls
* No shared variables

* Program run on a single processor just like any uniprocessor
program, except for calls to message passing library

* Subroutines for

« Communication
« Pairwise or point-to-point: Send and Receive
» Collectives all processor get together to
— Move data: Broadcast, Scatter/gather

— Compute and move: sum, product, max, ... of data on many
pProcessors

« Synchronization
« Barrier
» No locks because there are no shared variables to protect
* Enquiries
* How many processes? Which one am I? Any messages waiting?
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Novel Features of MPI

« Communicators encapsulate communication spaces for
library safety

« Datatypes reduce copying costs and permit
heterogeneity

« Multiple communication modes allow precise buffer
management

« Extensive collective operations for scalable global
communication

* Process topologies permit efficient process placement,
user views of process layout

* Profiling interface encourages portable tools
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MPI| References

 The Standard itself:

e at http://www.mpi-forum.org
 All MPI official releases, in both postscript and HTML

e Other information on Web:

e at http://www.mcs.anl.gov/mpi

* pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages
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http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

Finding Out About the Environment

« Two important questions that arise early in a
parallel program are:

 How many processes are participating in this
computation?

 Which one am 1?

* MPI provides functions to answer these
guestions:
MPI Comm _ size reports the number of processes.

MPI Comm _rank reports the rank, a number between
0 and size-1, identifying the calling process

02/8/2011 CS267 Lecture 7 Slide source: Bill Gfopp, ANL 37



Hello (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI Init( &argc, &argv );
MPI Comm rank( MPI COMM WORLD, é&rank );
MPI Comm . size( MPI COMM WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI Finalize();
return O;
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Notes on Hello World

 All MPI programs begin with MPI1_Init and end with
MPI_Finalize
« MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in the
MPI “job”
« Each statement executes independently in each process
 Including the printf/print statements

* |/O not part of MPI-1but is in MPI-2

* print and write to standard output or error not part of either MPI-
1 or MPI-2

 output order is undefined (may be interleaved by character, line,
or blocks of characters),

* The MPI-1 Standard does not specify how to run an MPI
program, but many implementations provide

mplirun —-np 4 a.out
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MPI| Basic Send/Recelve

 We need to fill In the detalls In

Process 0 Process 1

Send (data) —

Receive (data)

* Things that need specifying:
* How will “data” be described?
* How will processes be identified?
* How will the receiver recognize/screen messages?
« What will it mean for these operations to complete?
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Some Basic Concepts

* Processes can be collected into groups

« Each message is sent in a context, and must be
received In the same context
* Provides necessary support for libraries

« A group and context together form a
communicator

A process Is identified by its rank in the group
assoclated with a communicator

* There Is a default communicator whose group

contains all initial processes, called
MPI COMM WORLD
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MPI Datatypes

* The data in a message to send or receive is described
by a triple (address, count, datatype), where

« An MPI datatype is recursively defined as:

* predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE)

« a contiguous array of MPI datatypes

« a strided block of datatypes

« an indexed array of blocks of datatypes
 an arbitrary structure of datatypes

* There are MPI functions to construct custom datatypes,
In particular ones for subarrays

* May hurt performance if datatypes are complex
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MPI Tags

* Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process In identifying the message

* Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY TAG as thetagin a
receive

« Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

02/8/2011 CS267 Lecture 7 Slide source: Bill Gropp, ANL
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MPI Basic (Blocking) Send
AEN—

T B@Y) |

MPI_Send( A, 10, MPI_DOUBLE, 1, .. ) MPI_RGCV( B, 20’ MPI_DOUBLE, 0, N )

MPI SEND (start, count, datatype, dest, tag,
comm)

 The message buffer is described by (start, count,
datatype).

» The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

* When this function returns, the data has been delivered to
the system and the buffer can be reused. The message
may not have been received by the target process.
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MPI| Basic (Blocking) Receive

AEN——

T B@Y) |

MPI_Send( A, 10, MPI_DOUBLE, 1, .. ) MPI_RCCV( B, 20’ MPI_DOUBLE, O, N )
MPI RECV (start, count, datatype, source, tag,

comm, status)

« Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

e source IS rank in communicator specified by comm, or
MPI_ANY SOURCE

- tag Is a tag to be matched on or MPI_ANY TAG

* recelving fewer than count occurrences of datatype IS
OK, but receiving more Is an error

« status contains further information (e.g. size of message)
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A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main( int argc, char *argv([])
{
int rank, buf;
MPI Status status;
MPI Init(&argv, &argc);
MPI Comm rank( MPI_COMM WORLD, &rank );

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM WORLD) ;
}
else if (rank == 1) {
MPI Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM WORLD,
&status ) ;
printf( “Received %d\n”, buf );
}

MPI Finalize();
return 0;
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Retrieving Further Information

« Status is a data structure allocated in the user’s program.
*In C:

int recvd tag, recvd from, recvd count;
MPI Status status;

MPI Recv(..., MPI_ANY SOURCE, MPI_ANY TAG,
recvd tag = status.MPI TAG;

recvd from = status.MPI_ SOURCE;

MPI Get count( &status, datatype, &recvd count );

., &status )
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Tags and Contexts

« Separation of messages used to be accomplished by
use of tags, but

* this requires libraries to be aware of tags used by other
libraries.

* this can be defeated by use of “wild card” tags.
« Contexts are different from tags

* no wild cards allowed

« allocated dynamically by the system when a library sets up a
communicator for its own use.

« User-defined tags still provided in MPI for user
convenience in organizing application

02/8/2011 CS267 Lecture 7 Slide source: Bill Gropp, ANL 51



MPIl is Simple

« Many parallel programs can be written using just these
six functions, only two of which are non-trivial:

* MPI INIT

*MPI FINALIZE

 MPI_COMM SIZE

* MPI_COMM RANK

« MPI_SEND

« MPI_RECV
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Another Approach to Parallelism

* Collective routines provide a higher-level way to
organize a parallel program

« Each process executes the same communication
operations

* MPI provides a rich set of collective operations...
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Collective Operations in MPI

 Collective operations are called by all processes in a
communicator

«MPI_BCAST distributes data from one process (the
root) to all others in a communicator

«MPI_REDUCE combines data from all processes in
communicator and returns it to one process

* In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency

02/8/2011 CS267 Lecture 7 Slide source: Bill Gl’Opp, ANL
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Example: Plin C -1

#include "mpi.h"
#include <math.h>

#include <stdio.h>

int main(int argc, char *argv|[])

{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI Init(&argc, &argv);
MPI Comm size (MPI_ COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;
while (!'done) ({
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;
}
MPI Bcast (&n, 1, MPI INT, 0, MPI_COMM_WORLD) ;
if (n == 0) break;

02/8/2011 CS267 Lecture 7  Slide source: Bill Gropp, ANL
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Example: Plin C -2

h = 1.0 / (double) n;
sum = 0.0;
for (1 = myid + 1; i <= n; i += numprocs) {
x =h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}
mypi = h * sum;
MPI_ Reduce (&mypi, &pi, 1, MPI_DOUBLE, MPI SUM, O,
MPI_COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately %.16f, Error is .16f\n",
pi, fabs(pi - PI25DT));

}
MPI Finalize();

return O;

02/8/2011 CS267 Lecture 7  Slide source: Bill Gropp, ANL
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More on Message Passing

« Message passing is a simple programming model, but
there are some special issues
 Buffering and deadlock
« Deterministic execution
» Performance
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Buffers

 When you send data, where does it go? One possibility is:

Process 0 Process 1

Slide source: Bill Gropp, ANL
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Avoiding Bufferin

 Avoiding copies uses less memory
« May use more or less time

Process 0 Process 1

!-_F =

This requires that MPI_Send wait on delivery, or
that MPI_sSend return before transfer is complete,

and we wait later.
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Sources of Deadlocks

« Send a large message from process 0 to process 1

* |f there is insufficient storage at the destination, the send must
wait for the user to provide the memory space (through a
receive)

« What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This is called “"unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received
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Sources of Deadlocks

* Will there be a deadlock?
« Assume tag/process ID is assigne properly.

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)
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Some Solutions to the “unsafe” Problem

» Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process 0 Process 1

Sendrecv (1) Sendrecv (0)
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More Solutions to the “unsafe’” Problem

e Supply own space as buffer for send

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process 0 Process 1

Isend (1) Isend (0)
Irecv(l) Irecv(0)
Waitall Waitall
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MPI’s Non-blocking Operations

* Non-blocking operations return (immediately) “request

handles” that can be tested and waited on:
MPI Request request;
MPI_Status status;

MPI Isend(start, count, datatype,
dest, tag, comm, &request);

MPI Irecv(start, count, datatype,
dest, tag, comm, &request);

MPI Wait (&request, &status);
(each request must be Waited on)

* One can also test without waiting:
MPI Test (&request, &flag, &status);
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Communication Modes

« MPI provides multiple modes for sending messages:

« Synchronous mode (MPI_Ssend): the send does not complete

until a matching receive has begun. (Unsafe programs
deadlock.)

- Buffered mode (MPI_Bsend): the user supplies a buffer to the

system for its use. (User allocates enough memory to make an
unsafe program safe.

- Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.
« Allows access to fast protocols
« undefined behavior if matching receive not posted

* Non-blocking versions (MPI_Issend, etc.)
*MPI_ Recv receives messages sent in any mode.

« See www.mpi-forum.org for summary of all flavors of
send/receive
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MPI Collective Communication

« Communication and computation is coordinated among
a group of processes in a communicator.

« Groups and communicators can be constructed “by
hand” or using topology routines.

« Tags are not used, different communicators deliver
similar functionality.

* No non-blocking collective operations.

» Three classes of operations: synchronization, data
movement, collective computation.
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Synchronization

*MPI Barrier( comm )
 Blocks until all processes in the group of the
communicator comm call it.

« Almost never required in a parallel program

« Occasionally useful in measuring performance and load
balancing
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Collective Data Movement
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Comments on Broadcast

« All collective operations must be called by all processes
In the communicator

« MP|_Bcast is called by both the sender (called the root
process) and the processes that are to receive the
broadcast

 MPI_Bcast is not a “multi-send”

 “root” argument is the rank of the sender; this tells MPI which
process originates the broadcast and which receive
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More Collective Data Movement
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Collective Computation
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MPI Collective Routines

 Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallwv, Bcast,
Gather, Gatherv, Reduce, Reduce scatter,
Scan, Scatter, Scatterv

«All versions deliver results to all participating
processes.

* VV versions allow the hunks to have variable sizes.

°Allreduce,Reduce,Reduce_scatter,amdScan

take both built-in and user-defined combiner functions.

e MPI-2 adds Alltoallw, Exscan, Intercommunicator
versions of most routines
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MPI Built-in Collective Computation Operations

« MPI MAX Maximum

 MPI MIN Minimum

« MPT_PROD Product

« MPI SUM Sum

« MPT_LAND Logical and

« MPI LOR Logical or

« MPI LXOR Logical exclusive or

« MPT_BAND Binary and

« MPI BOR Binary or

« MPI BXOR Binary exclusive or

« MPT MAXLOC Maximum and location
« MPT_MINLOC Minimum and location
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Not Covered

« Topologies: map a communicator onto, say, a 3D
Cartesian processor grid
* Implementation can provide ideal logical to physical mapping

* Rich set of I/O functions: individual, collective, blocking
and non-blocking

 Collective 1/O can lead to many small requests being merged
for more efficient I/O

* One-sided communication: puts and gets with various
synchronization schemes
* Implementations not well-optimized and rarely used
« Redesign of interface is underway
« Task creation and destruction: change number of tasks
during a run
* Few implementations available
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Implementing Synchronous Message Passing

« Send operations complete after matching receive and
source data has been sent.

« Receive operations complete after data transfer is
complete from matching send.

1) Initiate send
2) Address translation on P g,

3) Send-Ready Request shrecu{ﬂsm, addr, len, tag)

. read
4) Remote check for posted receive Y

send(P_dest, addr, len, tag)

tag match

5) Reply transaction
recv

ready
6) Bulk data transfer
L Jﬂifer
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Implementing Asynchronous Message Passing

« Optimistic single-phase protocol assumes the
destination can buffer data on demand.

source destination
1) Initiate send
2) Address translation on P, selnd(P_dest, addr, len, tag)
3) Send Data Request -

: data xfer tag match

4) Remote check fpr posted recelve alloc buffer
5) Allocate buffer (if check failed)
6) Bulk data transfer |

time recv(P_src, addr, len, tag)

¥
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Safe Asynchronous Message Passing

» Use 3-phase protocol
» Buffer on sending side
« Variations on send completion
 wait until data copied from user to system buffer

« don’t wait -- let the user beware of modifying data

source destination
1) Initiate send
2)  Address translation on P g

3) Send-Ready Request l EMTEEMF{P_SFG, addr, len, tag)

send{P_dest, addr, len, tag)

4) Remote check for posted receive continue ready p—
record send-rdy computing tag match
5) Reply transaction
ey

ready
6) Bulk data transfer
= @m

time
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Books on MPI

Using MPI. Portable Parallel Programming G
with the Message-Passing Interface (2"¢ edition), s p—
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

MPI. The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 4

Saphir, and Snir, MIT Press, 1998. V -
- o - mMPI
Designing and Building Parallel Programs, by lan Foster, - )
Addison-Wesley, 1995. |
Parallel Programming with MPI, by Peter Pacheco, Morgan- ’éﬁﬁ :
Kaufmann, 1997. e '
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