
CS267 Lecture 7 1

Distributed Memory
Machines and Programming

James Demmel and Kathy Yelick

www.cs.berkeley.edu/~demmel/cs267_Spr11

02/8/2011 2 CS267 Lecture 7

Recap of Last Lecture

• Shared memory multiprocessors

• Caches may be either shared or distributed.

• Multicore chips are likely to have shared caches

• Cache hit performance is better if they are distributed

(each cache is smaller/closer) but they must be kept

coherent -- multiple cached copies of same location must

be kept equal.

• Requires clever hardware.

• Distant memory much more expensive to access.

• Machines scale to 10s or 100s of processors.

• Shared memory programming

• Starting, stopping threads.

• Communication by reading/writing shared variables.

• Synchronization with locks, barriers.

02/8/2011

Architectures (TOP50)

02/8/2011 4 CS267 Lecture 7

Outline

• Distributed Memory Architectures

• Properties of communication networks

• Topologies

• Performance models

• Programming Distributed Memory Machines

using Message Passing

• Overview of MPI

• Basic send/receive use

• Non-blocking communication

• Collectives

02/8/2011 5 CS267 Lecture 7

Historical Perspective

• Early distributed memory machines were:

• Collection of microprocessors.

• Communication was performed using bi-directional queues

between nearest neighbors.

• Messages were forwarded by processors on path.

• “Store and forward” networking

• There was a strong emphasis on topology in algorithms,

in order to minimize the number of hops = minimize time

02/8/2011 6 CS267 Lecture 7

Network Analogy

• To have a large number of different transfers occurring at

once, you need a large number of distinct wires

• Not just a bus, as in shared memory

• Networks are like streets:

• Link = street.

• Switch = intersection.

• Distances (hops) = number of blocks traveled.

• Routing algorithm = travel plan.

• Properties:

• Latency: how long to get between nodes in the network.

• Bandwidth: how much data can be moved per unit time.

• Bandwidth is limited by the number of wires and the rate at

which each wire can accept data.

02/8/2011 7 CS267 Lecture 7

Design Characteristics of a Network

• Topology (how things are connected)

• Crossbar, ring, 2-D and 3-D mesh or torus,
hypercube, tree, butterfly, perfect shuffle

• Routing algorithm:

• Switching strategy:

• Circuit switching: full path reserved for entire
message, like the telephone.

• Packet switching: message broken into separately-
routed packets, like the post office.

• Flow control (what if there is congestion):

• Stall, store data temporarily in buffers, re-route data
to other nodes, tell source node to temporarily halt,
discard, etc.

02/8/2011 8 CS267 Lecture 7

Performance Properties of a Network: Latency

• Diameter: the maximum (over all pairs of nodes) of the

shortest path between a given pair of nodes.

• Latency: delay between send and receive times

• Latency tends to vary widely across architectures

• Vendors often report hardware latencies (wire time)

• Application programmers care about software

latencies (user program to user program)

• Observations:

• Latencies differ by 1-2 orders across network designs

• Software/hardware overhead at source/destination

dominate cost (1s-10s usecs)

• Hardware latency varies with distance (10s-100s nsec

per hop) but is small compared to overheads

• Latency is key for programs with many small messages

02/8/2011 9 CS267 Lecture 7

Latency on Some Recent Machines/Networks

• Latencies shown are from a ping-pong test using MPI

• These are roundtrip numbers: many people use ½ of roundtrip time

to approximate 1-way latency (which can’t easily be measured)

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

18.5

24.2

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
o

u
n

d
tr

ip
 L

a
te

n
c

y
 (

u
s

e
c

)

MPI ping-pong

02/8/2011 10 CS267 Lecture 7

End to End Latency (1/2 roundtrip) Over Time

6.9745

36.34

7.2755

3.3

12.0805

9.25

2.6

6.905

11.027

4.81

nCube/2

nCube/2

CM5

CM5 CS2

CS2

SP1

SP2

Paragon

T3D
T3D

SPP

KSR

SPP

Cenju3

T3E

T3E18.916

SP-Power3

Quadrics

Myrinet

Quadrics

1

10

100

1990 1995 2000 2005 2010
Year (approximate)

us
ec

• Latency has not improved significantly, unlike Moore’s Law
• T3E (shmem) was lowest point – in 1997

Data from Kathy Yelick, UCB and NERSC

02/8/2011 11 CS267 Lecture 7

Performance Properties of a Network: Bandwidth

• The bandwidth of a link = # wires / time-per-bit

• Bandwidth typically in Gigabytes/sec (GB/s),

i.e., 8* 220 bits per second

• Effective bandwidth is usually lower than physical link

bandwidth due to packet overhead.
Routing

and control

header

Data

payload

Error code

Trailer

• Bandwidth is important for applications

with mostly large messages

02/8/2011 12 CS267 Lecture 7

Bandwidth on Existing Networks

• Flood bandwidth (throughput of back-to-back 2MB messages)

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e

rc
e

n
t

H
W

 p
e

a
k

 (
B

W
 i
n

 M
B

) MPI

02/8/2011 13 CS267 Lecture 7

Bandwidth Chart

0

50

100

150

200

250

300

350

400

2048 4096 8192 16384 32768 65536 131072

Message Size (Bytes)

B
a
n

d
w

id
th

 (
M

B
/s

e
c
)

T3E/MPI

T3E/Shmem

IBM/MPI

IBM/LAPI

Compaq/Put

Compaq/Get

M2K/MPI

M2K/GM

Dolphin/MPI

Giganet/VIPL

SysKonnect

Data from Mike Welcome, NERSC

Note: bandwidth depends on SW, not just HW

02/8/2011 14 CS267 Lecture 7

Performance Properties of a Network: Bisection Bandwidth

• Bisection bandwidth: bandwidth across smallest cut that

divides network into two equal halves

• Bandwidth across “narrowest” part of the network

bisection

cut

not a

bisection

cut

bisection bw= link bw bisection bw = sqrt(n) * link bw

• Bisection bandwidth is important for algorithms in which

all processors need to communicate with all others

02/8/2011 15 CS267 Lecture 7

Network Topology

• In the past, there was considerable research in network

topology and in mapping algorithms to topology.

• Key cost to be minimized: number of “hops” between

nodes (e.g. “store and forward”)

• Modern networks hide hop cost (i.e., “wormhole

routing”), so topology is no longer a major factor in

algorithm performance.

• Example: On IBM SP system, hardware latency varies

from 0.5 usec to 1.5 usec, but user-level message

passing latency is roughly 36 usec.

• Need some background in network topology

• Algorithms may have a communication topology

• Topology affects bisection bandwidth.

02/8/2011 16 CS267 Lecture 7

Linear and Ring Topologies

• Linear array

• Diameter = n-1; average distance ~n/3.

• Bisection bandwidth = 1 (in units of link bandwidth).

• Torus or Ring

• Diameter = n/2; average distance ~ n/4.

• Bisection bandwidth = 2.

• Natural for algorithms that work with 1D arrays.

02/8/2011 17 CS267 Lecture 7

Meshes and Tori

Two dimensional mesh

• Diameter = 2 * (sqrt(n) – 1)

• Bisection bandwidth = sqrt(n)

• Generalizes to higher dimensions

• Cray XT (eg Franklin@NERSC) uses 3D Torus

• Natural for algorithms that work with 2D and/or 3D arrays (matmul)

Two dimensional torus

• Diameter = sqrt(n)

• Bisection bandwidth = 2* sqrt(n)

02/8/2011 18 CS267 Lecture 7

Hypercubes

• Number of nodes n = 2d for dimension d.

• Diameter = d.

• Bisection bandwidth = n/2.

• 0d 1d 2d 3d 4d

• Popular in early machines (Intel iPSC, NCUBE).

• Lots of clever algorithms.

• See 1996 online CS267 notes.

• Greycode addressing:

• Each node connected to

d others with 1 bit different.
001 000

100

010 011

111

101

110

02/8/2011 19 CS267 Lecture 7

Trees

• Diameter = log n.

• Bisection bandwidth = 1.

• Easy layout as planar graph.

• Many tree algorithms (e.g., summation).

• Fat trees avoid bisection bandwidth problem:

• More (or wider) links near top.

• Example: Thinking Machines CM-5.

02/8/2011 20 CS267 Lecture 7

Butterflies

• Diameter = log n.

• Bisection bandwidth = n.

• Cost: lots of wires.

• Used in BBN Butterfly.

• Natural for FFT.

O 1 O 1

O 1 O 1

butterfly switch
multistage butterfly network

Ex: to get from proc 101 to 110,

Compare bit-by-bit and

Switch if they disagree, else not

02/8/2011 21 CS267 Lecture 7

Topologies in Real Machines

Cray XT3 and XT4 3D Torus (approx)

Blue Gene/L 3D Torus

SGI Altix Fat tree

Cray X1 4D Hypercube*

Myricom (Millennium) Arbitrary

Quadrics (in HP Alpha

server clusters)

Fat tree

IBM SP Fat tree (approx)

SGI Origin Hypercube

Intel Paragon (old) 2D Mesh

BBN Butterfly (really old) Butterfly

o
ld

e
r

 n

e
w

e
r

Many of these are

approximations:

E.g., the X1 is really a

“quad bristled

hypercube” and some

of the fat trees are

not as fat as they

should be at the top

CS267 Lecture 7 22

Performance
Models

02/8/2011 23 CS267 Lecture 7

Latency and Bandwidth Model

• Time to send message of length n is roughly

• Topology is assumed irrelevant.

• Often called “a-b model” and written

• Usually a >> b >> time per flop.

• One long message is cheaper than many short ones.

• Can do hundreds or thousands of flops for cost of one message.

• Lesson: Need large computation-to-communication ratio

to be efficient.

Time = latency + n*cost_per_word

 = latency + n/bandwidth

Time = a + n*b

a + n*b << n*(a + 1*b)

02/8/2011 24 CS267 Lecture 7

Alpha-Beta Parameters on Current Machines

• These numbers were obtained empirically

machine a b

T3E/Shm 1.2 0.003

T3E/MPI 6.7 0.003

IBM/LAPI 9.4 0.003

IBM/MPI 7.6 0.004

Quadrics/Get 3.267 0.00498

Quadrics/Shm 1.3 0.005

Quadrics/MPI 7.3 0.005

Myrinet/GM 7.7 0.005

Myrinet/MPI 7.2 0.006

Dolphin/MPI 7.767 0.00529

Giganet/VIPL 3.0 0.010

GigE/VIPL 4.6 0.008

GigE/MPI 5.854 0.00872

a is latency in usecs

b is BW in usecs per Byte

How well does the model
 Time = a + n*b

predict actual performance?

02/8/2011 25 CS267 Lecture 7

1

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm

T3E/MPI

IBM/LAPI

IBM/MPI

Quadrics/Shm

Quadrics/MPI

Myrinet/GM

Myrinet/MPI

GigE/VIPL

GigE/MPI

Drop Page Fields Here

Sum of model

size

machine

Model Time Varying Message Size & Machines

02/8/2011 26 CS267 Lecture 7

1

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm

T3E/MPI

IBM/LAPI

IBM/MPI

Quadrics/Shm

Quadrics/MPI

Myrinet/GM

Myrinet/MPI

GigE/VIPL

GigE/MPI

Drop Page Fields Here

Sum of gap

size

machine

Measured Message Time

02/8/2011 27 CS267 Lecture 7

LogP Parameters: Overhead & Latency

• Non-overlapping

overhead

• Send and recv overhead

can overlap

P0

P1

osend

L

orecv

P0

P1

osend

orecv

EEL = End-to-End Latency

 = osend + L + orecv

EEL = f(osend, L, orecv)

  max(osend, L, orecv)

02/8/2011 28 CS267 Lecture 7

LogP Parameters: gap

• The Gap is the delay between sending

messages

• Gap could be greater than send overhead

• NIC may be busy finishing the

processing of last message and

cannot accept a new one.

• Flow control or backpressure on the

network may prevent the NIC from

accepting the next message to send.

• No overlap 

 time to send n messages (pipelined) =

P0

P1

osend gap

gap

(osend + L + orecv - gap) + n*gap = α + n*β

02/8/2011 29 CS267 Lecture 7

Results: EEL and Overhead

0

5

10

15

20

25

T3E
/M

P
I

T3E
/S

hm
em

T3E
/E

-R
eg

IB
M

/M
P
I

IB
M

/L
A
P
I

Q
ua

dr
ic
s/
M

P
I

Q
ua

dr
ic
s/
P
ut

Q
ua

dr
ic
s/
G
et

M
2K

/M
P
I

M
2K

/G
M

D
ol

ph
in
/M

P
I

G
ig

an
et

/V
IP

L

u
s
e

c

Send Overhead (alone) Send & Rec Overhead Rec Overhead (alone) Added Latency

Data from Mike Welcome, NERSC

02/8/2011 30 CS267 Lecture 7

Send Overhead Over Time

• Overhead has not improved significantly; T3D was best

• Lack of integration; lack of attention in software

Myrinet2K

Dolphin

T3E

Cenju4

CM5

CM5

Meiko

Meiko
Paragon

T3D

Dolphin

Myrinet

SP3

SCI

Compaq

NCube/2

T3E
0

2

4

6

8

10

12

14

1990 1992 1994 1996 1998 2000 2002
Year (approximate)

u
s
e
c

Data from Kathy Yelick, UCB and NERSC

02/8/2011 31 CS267 Lecture 7

Limitations of the LogP Model

• The LogP model has a fixed cost for each message

• This is useful in showing how to quickly broadcast a single word

• Other examples also in the LogP papers

• For larger messages, there is a variation LogGP

• Two gap parameters, one for small and one for large messages

• The large message gap is the b in our previous model

• No topology considerations (including no limits for

bisection bandwidth)

• Assumes a fully connected network

• OK for some algorithms with nearest neighbor communication,

but with “all-to-all” communication we need to refine this further

• This is a flat model, i.e., each processor is connected to

the network

• Clusters of multicores are not accurately modeled

02/8/2011 32 CS267 Lecture 7

Slides from

Jonathan Carter (jtcarter@lbl.gov),

Katherine Yelick (yelick@cs.berkeley.edu),

Bill Gropp (wgropp@illinois.edu)

Programming
Distributed Memory Machines

with
Message Passing

02/8/2011 CS267 Lecture 7 33

Message Passing Libraries (1)

• Many “message passing libraries” were once available

• Chameleon, from ANL.

• CMMD, from Thinking Machines.

• Express, commercial.

• MPL, native library on IBM SP-2.

• NX, native library on Intel Paragon.

• Zipcode, from LLL.

• PVM, Parallel Virtual Machine, public, from ORNL/UTK.

• Others...

• MPI, Message Passing Interface, now the industry standard.

• Need standards to write portable code.

02/8/2011 CS267 Lecture 7 34

Message Passing Libraries (2)

• All communication, synchronization require subroutine calls

• No shared variables

• Program run on a single processor just like any uniprocessor

program, except for calls to message passing library

• Subroutines for

• Communication

• Pairwise or point-to-point: Send and Receive

• Collectives all processor get together to

– Move data: Broadcast, Scatter/gather

– Compute and move: sum, product, max, … of data on many

processors

• Synchronization

• Barrier

• No locks because there are no shared variables to protect

• Enquiries

• How many processes? Which one am I? Any messages waiting?

02/8/2011 CS267 Lecture 7
35

Novel Features of MPI

• Communicators encapsulate communication spaces for

library safety

• Datatypes reduce copying costs and permit

heterogeneity

• Multiple communication modes allow precise buffer

management

• Extensive collective operations for scalable global

communication

• Process topologies permit efficient process placement,

user views of process layout

• Profiling interface encourages portable tools

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7
36

MPI References

• The Standard itself:

• at http://www.mpi-forum.org

• All MPI official releases, in both postscript and HTML

• Other information on Web:

• at http://www.mcs.anl.gov/mpi

• pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

02/8/2011 CS267 Lecture 7 37

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?

• MPI provides functions to answer these
questions:
•MPI_Comm_size reports the number of processes.

•MPI_Comm_rank reports the rank, a number between
0 and size-1, identifying the calling process

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 38

Hello (C)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 printf("I am %d of %d\n", rank, size);

 MPI_Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 40

Notes on Hello World

• All MPI programs begin with MPI_Init and end with
MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in the
MPI “job”

• Each statement executes independently in each process
• including the printf/print statements

• I/O not part of MPI-1but is in MPI-2
• print and write to standard output or error not part of either MPI-

1 or MPI-2

• output order is undefined (may be interleaved by character, line,
or blocks of characters),

• The MPI-1 Standard does not specify how to run an MPI

program, but many implementations provide

mpirun –np 4 a.out
Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 41

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?

• How will processes be identified?

• How will the receiver recognize/screen messages?

• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 42

Some Basic Concepts

• Processes can be collected into groups

• Each message is sent in a context, and must be

received in the same context

• Provides necessary support for libraries

• A group and context together form a

communicator

• A process is identified by its rank in the group

associated with a communicator

• There is a default communicator whose group

contains all initial processes, called
MPI_COMM_WORLD

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 43

MPI Datatypes

• The data in a message to send or receive is described

by a triple (address, count, datatype), where

• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE)

• a contiguous array of MPI datatypes

• a strided block of datatypes

• an indexed array of blocks of datatypes

• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes,

in particular ones for subarrays

• May hurt performance if datatypes are complex

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 44

MPI Tags

• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving

process in identifying the message

• Messages can be screened at the receiving end

by specifying a specific tag, or not screened by

specifying MPI_ANY_TAG as the tag in a

receive

• Some non-MPI message-passing systems have

called tags “message types”. MPI calls them

tags to avoid confusion with datatypes

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 45

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag,

comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the rank of

the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to

the system and the buffer can be reused. The message

may not have been received by the target process.

Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

02/8/2011 CS267 Lecture 7
46

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,

comm, status)

• Waits until a matching (both source and tag) message is

received from the system, and the buffer can be used

•source is rank in communicator specified by comm, or

MPI_ANY_SOURCE

•tag is a tag to be matched on or MPI_ANY_TAG

• receiving fewer than count occurrences of datatype is

OK, but receiving more is an error

•status contains further information (e.g. size of message)
Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

02/8/2011 CS267 Lecture 7 47

A Simple MPI Program

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rank, buf;

 MPI_Status status;

 MPI_Init(&argv, &argc);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */

 if (rank == 0) {

 buf = 123456;

 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

 }

 else if (rank == 1) {

 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 &status);

 printf(“Received %d\n”, buf);

 }

 MPI_Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7
49

Retrieving Further Information

•Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 51

Tags and Contexts

• Separation of messages used to be accomplished by

use of tags, but

• this requires libraries to be aware of tags used by other

libraries.

• this can be defeated by use of “wild card” tags.

• Contexts are different from tags

• no wild cards allowed

• allocated dynamically by the system when a library sets up a

communicator for its own use.

• User-defined tags still provided in MPI for user

convenience in organizing application

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 53

MPI is Simple

• Many parallel programs can be written using just these

six functions, only two of which are non-trivial:

•MPI_INIT

•MPI_FINALIZE

•MPI_COMM_SIZE

•MPI_COMM_RANK

•MPI_SEND

•MPI_RECV

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 54

Another Approach to Parallelism

• Collective routines provide a higher-level way to

organize a parallel program

• Each process executes the same communication

operations

• MPI provides a rich set of collective operations…

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 55

Collective Operations in MPI

• Collective operations are called by all processes in a

communicator

•MPI_BCAST distributes data from one process (the

root) to all others in a communicator

•MPI_REDUCE combines data from all processes in

communicator and returns it to one process

• In many numerical algorithms, SEND/RECEIVE can be

replaced by BCAST/REDUCE, improving both simplicity

and efficiency

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 56

Example: PI in C - 1

#include "mpi.h"

#include <math.h>
#include <stdio.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

 if (myid == 0) {

 printf("Enter the number of intervals: (0 quits) ");

 scanf("%d",&n);

 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 if (n == 0) break;

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 57

Example: PI in C - 2

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i += numprocs) {

 x = h * ((double)i - 0.5);

 sum += 4.0 / (1.0 + x*x);

 }

 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

 if (myid == 0)

 printf("pi is approximately %.16f, Error is .16f\n",

 pi, fabs(pi - PI25DT));

}

MPI_Finalize();

 return 0;

}
Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7
64

More on Message Passing

• Message passing is a simple programming model, but

there are some special issues

• Buffering and deadlock

• Deterministic execution

• Performance

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 65

Buffers

• When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 66

Avoiding Buffering

• Avoiding copies uses less memory

• May use more or less time

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,

and we wait later.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 67

• Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 68

• Will there be a deadlock?

• Assume tag/process ID is assigne properly.

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 69

Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 70

More Solutions to the “unsafe” Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

02/8/2011 CS267 Lecture 7 71

MPI’s Non-blocking Operations

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:
MPI_Request request;

MPI_Status status;

 MPI_Isend(start, count, datatype,

 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,

 dest, tag, comm, &request);

 MPI_Wait(&request, &status);

(each request must be Waited on)

• One can also test without waiting:
 MPI_Test(&request, &flag, &status);

Slide source: Bill Gropp, ANL

02/8/2011 CS267 Lecture 7 74

Communication Modes

• MPI provides multiple modes for sending messages:
• Synchronous mode (MPI_Ssend): the send does not complete

until a matching receive has begun. (Unsafe programs

deadlock.)

• Buffered mode (MPI_Bsend): the user supplies a buffer to the

system for its use. (User allocates enough memory to make an

unsafe program safe.

• Ready mode (MPI_Rsend): user guarantees that a matching

receive has been posted.

• Allows access to fast protocols

• undefined behavior if matching receive not posted

• Non-blocking versions (MPI_Issend, etc.)

•MPI_Recv receives messages sent in any mode.

• See www.mpi-forum.org for summary of all flavors of

send/receive

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

02/8/2011 CS267 Lecture 7 77

MPI Collective Communication

• Communication and computation is coordinated among

a group of processes in a communicator.

• Groups and communicators can be constructed “by

hand” or using topology routines.

• Tags are not used; different communicators deliver

similar functionality.

• No non-blocking collective operations.

• Three classes of operations: synchronization, data

movement, collective computation.

02/8/2011 CS267 Lecture 7 78

Synchronization

•MPI_Barrier(comm)

• Blocks until all processes in the group of the

communicator comm call it.

• Almost never required in a parallel program

• Occasionally useful in measuring performance and load

balancing

02/8/2011 CS267 Lecture 7 80

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

02/8/2011 CS267 Lecture 7 81

Comments on Broadcast

• All collective operations must be called by all processes

in the communicator

• MPI_Bcast is called by both the sender (called the root

process) and the processes that are to receive the

broadcast

• MPI_Bcast is not a “multi-send”

• “root” argument is the rank of the sender; this tells MPI which

process originates the broadcast and which receive

02/8/2011 CS267 Lecture 7 82

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

02/8/2011 CS267 Lecture 7 83

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

02/8/2011 CS267 Lecture 7 84

MPI Collective Routines

• Many Routines: Allgather, Allgatherv,

Allreduce, Alltoall, Alltoallv, Bcast,

Gather, Gatherv, Reduce, Reduce_scatter,

Scan, Scatter, Scatterv

•All versions deliver results to all participating

processes.

• V versions allow the hunks to have variable sizes.

•Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner functions.

• MPI-2 adds Alltoallw, Exscan, intercommunicator

versions of most routines

02/8/2011 CS267 Lecture 7 85

MPI Built-in Collective Computation Operations

• MPI_MAX

• MPI_MIN

• MPI_PROD

• MPI_SUM

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_MAXLOC

• MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Binary and

Binary or

Binary exclusive or

Maximum and location

Minimum and location

02/8/2011 CS267 Lecture 7 88

Not Covered

• Topologies: map a communicator onto, say, a 3D

Cartesian processor grid

• Implementation can provide ideal logical to physical mapping

• Rich set of I/O functions: individual, collective, blocking

and non-blocking

• Collective I/O can lead to many small requests being merged

for more efficient I/O

• One-sided communication: puts and gets with various

synchronization schemes

• Implementations not well-optimized and rarely used

• Redesign of interface is underway

• Task creation and destruction: change number of tasks

during a run

• Few implementations available

89

Backup Slides

CS267 Lecture 7

02/8/2011 CS267 Lecture 7 90

Implementing Synchronous Message Passing

• Send operations complete after matching receive and

source data has been sent.

• Receive operations complete after data transfer is

complete from matching send.
 source destination

1) Initiate send send (Pdest, addr, length,tag) rcv(Psource, addr,length,tag)

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive tag match

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

 data-xfer

02/8/2011 CS267 Lecture 7 91

Implementing Asynchronous Message Passing

• Optimistic single-phase protocol assumes the

destination can buffer data on demand.

 source destination

1) Initiate send send (Pdest, addr, length,tag)

2) Address translation on Pdest

3) Send Data Request data-xfer-request

 tag match

 allocate

4) Remote check for posted receive

5) Allocate buffer (if check failed)

6) Bulk data transfer

 rcv(Psource, addr, length,tag)

02/8/2011 CS267 Lecture 7 92

Safe Asynchronous Message Passing

• Use 3-phase protocol

• Buffer on sending side

• Variations on send completion

• wait until data copied from user to system buffer

• don’t wait -- let the user beware of modifying data

 source destination

1) Initiate send

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive return and continue tag match

 record send-rdy computing

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

02/8/2011 CS267 Lecture 7 93

Books on MPI

• Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2nd edition),

by Gropp, Lusk, and Skjellum, MIT Press,

1999.

• Using MPI-2: Portable Parallel Programming

with the Message-Passing Interface, by Gropp,

Lusk, and Thakur, MIT Press, 1999.

• MPI: The Complete Reference - Vol 1 The MPI Core, by

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT

Press, 1998.

• MPI: The Complete Reference - Vol 2 The MPI Extensions,

by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,

Saphir, and Snir, MIT Press, 1998.

• Designing and Building Parallel Programs, by Ian Foster,

Addison-Wesley, 1995.

• Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.

Slide source: Bill Gropp, ANL

