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Recap of Last Lecture 

• Shared memory multiprocessors 

• Caches may be either shared or distributed. 

• Multicore chips are likely to have shared caches 

• Cache hit performance is better if they are distributed 

(each cache is smaller/closer) but they must be kept 

coherent -- multiple cached copies of same location must 

be kept equal. 

• Requires clever hardware. 

• Distant memory much more expensive to access. 

• Machines scale to 10s or 100s of processors. 

• Shared memory programming  

• Starting, stopping threads. 

• Communication by reading/writing shared variables. 

• Synchronization with locks, barriers. 
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Outline 

• Distributed Memory Architectures 

• Properties of communication networks 

• Topologies 

• Performance models 

• Programming Distributed Memory Machines 

using Message Passing 

• Overview of MPI 

• Basic send/receive use 

• Non-blocking communication 

• Collectives 
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Historical Perspective 

• Early distributed memory machines were: 

• Collection of microprocessors. 

• Communication was performed using bi-directional queues 

between nearest neighbors. 

• Messages were forwarded by processors on path. 

• “Store and forward” networking 

• There was a strong emphasis on topology in algorithms, 

in order to minimize the number of hops = minimize time 
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Network Analogy 

• To have a large number of different transfers occurring at 

once, you need a large number of distinct wires 

• Not just a bus, as in shared memory 

• Networks are like streets: 

• Link = street. 

• Switch = intersection. 

• Distances (hops) = number of blocks traveled. 

• Routing algorithm = travel plan. 

• Properties: 

• Latency: how long to get between nodes in the network. 

• Bandwidth: how much data can be moved per unit time. 

• Bandwidth is limited by the number of wires and the rate at 

which each wire can accept data. 
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Design Characteristics of a Network 

• Topology (how things are connected) 

• Crossbar, ring, 2-D and 3-D mesh or torus, 
hypercube, tree, butterfly, perfect shuffle .... 

• Routing algorithm: 

• Switching strategy: 

• Circuit switching: full path reserved for entire 
message, like the telephone. 

• Packet switching: message broken into separately-
routed packets, like the post office.   

• Flow control (what if there is congestion): 

• Stall, store data temporarily in buffers, re-route data 
to other nodes, tell source node to temporarily halt, 
discard, etc. 
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Performance Properties of a Network: Latency 

• Diameter:  the maximum (over all pairs of nodes) of the 

shortest path between a given pair of nodes. 

• Latency: delay between send and receive times 

• Latency tends to vary widely across architectures 

• Vendors often report hardware latencies (wire time) 

• Application programmers care about software 

latencies (user program to user program) 

• Observations: 

• Latencies differ by 1-2 orders across network designs 

• Software/hardware overhead at source/destination 

dominate cost (1s-10s usecs) 

• Hardware latency varies with distance (10s-100s nsec 

per hop) but is small compared to overheads 

• Latency is key for programs with many small messages 
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Latency on Some Recent Machines/Networks 

• Latencies shown are from a ping-pong test using MPI 

• These are roundtrip numbers: many people use ½ of roundtrip time 

to approximate 1-way latency (which can’t easily be measured) 

8-byte Roundtrip Latency
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End to End Latency (1/2 roundtrip) Over Time 
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• Latency has not improved significantly, unlike Moore’s Law 
• T3E (shmem) was lowest point – in 1997 

Data from Kathy Yelick, UCB and NERSC 
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Performance Properties of a Network: Bandwidth 

• The bandwidth of a link =   # wires / time-per-bit 

• Bandwidth typically in Gigabytes/sec (GB/s),          

i.e., 8* 220 bits per second 

• Effective bandwidth is usually lower than physical link 

bandwidth due to packet overhead. 
Routing 

and control 

header 

 

Data 

payload 

 

 

Error code 

Trailer 

• Bandwidth is important for applications 

with mostly large messages 
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Bandwidth on Existing Networks 

• Flood bandwidth (throughput of back-to-back 2MB messages) 

Flood Bandwidth for 2MB messages
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Bandwidth Chart 
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Performance Properties of a Network: Bisection Bandwidth 

• Bisection bandwidth:  bandwidth across smallest cut that 

divides network into two equal halves 

• Bandwidth across “narrowest” part of the network 

bisection  

cut 

not a  

bisection 

cut  

bisection bw= link bw bisection bw = sqrt(n) * link bw 

• Bisection bandwidth is important for algorithms in which 

all processors need to communicate with all others 
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Network Topology 

• In the past, there was considerable research in network 

topology and in mapping algorithms to topology. 

• Key cost to be minimized:  number of “hops” between 

nodes (e.g. “store and forward”) 

• Modern networks hide hop cost (i.e., “wormhole 

routing”), so topology is no longer a major factor in 

algorithm performance. 

• Example:  On IBM SP system, hardware latency varies 

from 0.5 usec to 1.5 usec, but user-level message 

passing latency is roughly 36 usec. 

• Need some background in network topology 

• Algorithms may have a communication topology 

• Topology affects bisection bandwidth. 
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Linear and Ring Topologies 

• Linear array 

 

• Diameter = n-1; average distance ~n/3. 

• Bisection bandwidth = 1 (in units of link bandwidth). 

• Torus or Ring 

 

 

 

 

• Diameter = n/2; average distance ~ n/4. 

• Bisection bandwidth = 2. 

• Natural for algorithms that work with 1D arrays. 
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Meshes and Tori  

Two dimensional mesh  

• Diameter = 2 * (sqrt( n ) – 1) 

• Bisection bandwidth =   sqrt(n) 

• Generalizes to higher dimensions  

• Cray XT (eg Franklin@NERSC) uses 3D Torus 

•  Natural for algorithms that work with 2D and/or 3D arrays (matmul) 

Two dimensional torus 

• Diameter = sqrt( n ) 

• Bisection bandwidth =   2* sqrt(n) 
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Hypercubes 

• Number of nodes n = 2d   for dimension d. 

• Diameter = d.  

• Bisection bandwidth = n/2. 

 

 

 

• 0d       1d       2d           3d                  4d 

 

• Popular in early machines (Intel iPSC, NCUBE). 

• Lots of clever algorithms.  

• See 1996 online CS267 notes. 

• Greycode addressing: 

• Each node connected to                                                                            

d others with 1 bit different.  
001 000 

100 

010 011 

111 

101 

110 
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Trees 

• Diameter = log n. 

• Bisection bandwidth = 1. 

• Easy layout as planar graph. 

• Many tree algorithms (e.g., summation). 

• Fat trees avoid bisection bandwidth problem: 

• More (or wider) links near top. 

• Example: Thinking Machines CM-5. 
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Butterflies 

• Diameter = log n. 

• Bisection bandwidth = n. 

• Cost: lots of wires. 

• Used in BBN Butterfly. 

• Natural for FFT. 

O    1 O    1 

O    1 O    1 

butterfly switch 
multistage butterfly network 

Ex: to get from proc 101 to 110, 

Compare bit-by-bit and 

Switch if they disagree, else not 
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Topologies in Real Machines 

Cray XT3 and XT4 3D Torus (approx) 

Blue Gene/L 3D Torus 

SGI Altix Fat tree 

Cray X1 4D Hypercube* 

Myricom (Millennium) Arbitrary 

Quadrics (in HP Alpha 

server clusters) 

Fat tree 

IBM SP Fat tree (approx) 

SGI Origin Hypercube 

Intel Paragon (old) 2D Mesh 

BBN Butterfly (really old) Butterfly 

o
ld

e
r 

  
 n

e
w

e
r 

Many of these are 

approximations: 

E.g., the X1 is really a 

“quad bristled 

hypercube” and some 

of the fat trees are 

not as fat as they 

should be at the top 
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Performance 
Models 
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Latency and Bandwidth Model 

• Time to send message of length n is roughly 

 

 

• Topology is assumed irrelevant. 

• Often called “a-b model” and written 

 

• Usually a >> b >> time per flop. 

• One long message is cheaper than many short ones. 

 

 

• Can do hundreds or thousands of flops for cost of one message. 

• Lesson:  Need large computation-to-communication ratio 

to be efficient. 

Time = latency + n*cost_per_word 

         = latency + n/bandwidth 

Time = a + n*b 

a + n*b  <<  n*(a + 1*b) 
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Alpha-Beta Parameters on Current Machines 

• These numbers were obtained empirically  

machine a b

T3E/Shm 1.2 0.003

T3E/MPI 6.7 0.003

IBM/LAPI 9.4 0.003

IBM/MPI 7.6 0.004

Quadrics/Get 3.267 0.00498

Quadrics/Shm 1.3 0.005

Quadrics/MPI 7.3 0.005

Myrinet/GM 7.7 0.005

Myrinet/MPI 7.2 0.006

Dolphin/MPI 7.767 0.00529

Giganet/VIPL 3.0 0.010

GigE/VIPL 4.6 0.008

GigE/MPI 5.854 0.00872

a is latency in usecs 

b is BW in usecs per Byte 

How well does the model 
          Time = a + n*b 

predict actual performance? 
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LogP Parameters: Overhead & Latency 

• Non-overlapping 

overhead 

• Send and recv overhead 

can overlap 

P0 

P1 

osend 

L 

orecv 

P0 

P1 

osend 

orecv 

EEL = End-to-End Latency 

         = osend + L + orecv 

EEL = f(osend, L, orecv) 

          max(osend, L, orecv) 
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LogP Parameters: gap 

• The Gap is the delay between sending 

messages 

• Gap could be greater than send overhead 

• NIC may be busy finishing the 

processing of last message and   

cannot accept a new one. 

• Flow control or backpressure on the 

network may prevent the NIC from 

accepting the next message to send. 

• No overlap   

  time to send n messages (pipelined) =

   

    

P0 

P1 

osend gap 

gap 

(osend + L + orecv  - gap)  + n*gap = α + n*β 
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Results: EEL and Overhead 
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Send Overhead Over Time 

• Overhead has not improved significantly; T3D was best 

• Lack of integration; lack of attention in software 
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Limitations of the LogP Model 

• The LogP model has a fixed cost for each message 

• This is useful in showing how to quickly broadcast a single word 

• Other examples also in the LogP papers 

• For larger messages, there is a variation LogGP 

• Two gap parameters, one for small and one for large messages 

• The large message gap is the b in our previous model 

• No topology considerations (including no limits for 

bisection bandwidth) 

• Assumes a fully connected network 

• OK for some algorithms with nearest neighbor communication, 

but with “all-to-all” communication we need to refine this further 

• This is a flat model, i.e., each processor is connected to 

the network 

• Clusters of multicores are not accurately modeled  
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Slides from  

Jonathan Carter (jtcarter@lbl.gov),  

Katherine Yelick (yelick@cs.berkeley.edu),  

Bill Gropp (wgropp@illinois.edu) 

Programming 
Distributed Memory Machines 

with  
Message Passing 
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Message Passing Libraries (1) 

• Many “message passing libraries” were once available 

• Chameleon, from ANL. 

• CMMD, from Thinking Machines. 

• Express, commercial. 

• MPL, native library on IBM SP-2. 

• NX, native library on Intel Paragon. 

• Zipcode, from LLL. 

• PVM, Parallel Virtual Machine, public, from ORNL/UTK. 

• Others... 

• MPI, Message Passing Interface, now the industry standard. 

• Need standards to write portable code. 
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Message Passing Libraries (2) 

• All communication, synchronization require subroutine calls 

• No shared variables 

• Program run on a single processor just like any uniprocessor 

program, except for calls to message passing library 

• Subroutines for 

• Communication  

• Pairwise or point-to-point: Send and Receive 

• Collectives all processor get together to 

– Move data: Broadcast, Scatter/gather 

– Compute and move: sum, product, max, … of data on many 

processors 

• Synchronization  

• Barrier 

• No locks because there are no shared variables to protect 

• Enquiries 

• How many processes? Which one am I? Any messages waiting? 



02/8/2011 CS267 Lecture 7 
35 

Novel Features of MPI 

• Communicators encapsulate communication spaces for 

library safety 

• Datatypes reduce copying costs and permit 

heterogeneity 

• Multiple communication modes allow precise buffer 

management 

• Extensive collective operations for scalable global 

communication 

• Process topologies permit efficient process placement, 

user views of process layout 

• Profiling interface encourages portable tools 

Slide source: Bill Gropp, ANL 
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MPI References 

• The Standard itself: 

• at http://www.mpi-forum.org 

• All MPI official releases, in both postscript and HTML 

• Other information on Web: 

• at http://www.mcs.anl.gov/mpi 

• pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

Slide source: Bill Gropp, ANL 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi
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Finding Out About the Environment 

• Two important questions that arise early in a 
parallel program are: 

• How many processes are participating in this 
computation? 

• Which one am I? 

• MPI provides functions to answer these 
questions: 
•MPI_Comm_size reports the number of processes. 

•MPI_Comm_rank reports the rank, a number between 
0 and size-1, identifying the calling process 

Slide source: Bill Gropp, ANL 
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Hello (C) 

#include "mpi.h" 

#include <stdio.h> 

 

int main( int argc, char *argv[] ) 

{ 

    int rank, size; 

    MPI_Init( &argc, &argv ); 

    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

    MPI_Comm_size( MPI_COMM_WORLD, &size ); 

    printf( "I am %d of %d\n", rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

Slide source: Bill Gropp, ANL 
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Notes on Hello World 

• All MPI programs begin with MPI_Init and end with 
MPI_Finalize 

• MPI_COMM_WORLD is defined by mpi.h (in C) or 
mpif.h (in Fortran) and designates all processes in the 
MPI “job” 

• Each statement executes independently in each process 
• including the printf/print statements 

• I/O not part of MPI-1but is in MPI-2 
• print and write to standard output or error not part of either MPI-

1 or MPI-2 

• output order is undefined (may be interleaved by character, line, 
or blocks of characters), 

• The MPI-1 Standard does not specify how to run an MPI 

program, but many implementations provide  

mpirun –np 4 a.out 
Slide source: Bill Gropp, ANL 
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MPI Basic Send/Receive 

• We need to fill in the details in 

 

 

 

 

• Things that need specifying: 
• How will “data” be described? 

• How will processes be identified? 

• How will the receiver recognize/screen messages? 

• What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 

Receive(data) 

Slide source: Bill Gropp, ANL 
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Some Basic Concepts 

• Processes can be collected into groups 

• Each message is sent in a context, and must be 

received in the same context 

• Provides necessary support for libraries 

• A group and context together form a 

communicator 

• A process is identified by its rank in the group 

associated with a communicator 

• There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD 

Slide source: Bill Gropp, ANL 
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MPI Datatypes 

• The data in a message to send or receive is described 

by a triple (address, count, datatype), where 

• An MPI datatype is recursively defined as: 

• predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE) 

• a contiguous array of MPI datatypes 

• a strided block of datatypes 

• an indexed array of blocks of datatypes 

• an arbitrary structure of datatypes 

• There are MPI functions to construct custom datatypes, 

in particular ones for subarrays 

• May hurt performance if datatypes are complex 

Slide source: Bill Gropp, ANL 
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MPI Tags 

• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving 

process in identifying the message 

• Messages can be screened at the receiving end 

by specifying a specific tag, or not screened by 

specifying MPI_ANY_TAG as the tag in a 

receive 

• Some non-MPI message-passing systems have 

called tags “message types”.  MPI calls them 

tags to avoid confusion with datatypes 

Slide source: Bill Gropp, ANL 
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MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, 

comm) 

• The message buffer is described by (start, count, 
datatype). 

• The target process is specified by dest, which is the rank of 

the target process in the communicator specified by comm. 

• When this function returns, the data has been delivered to 

the system and the buffer can be reused.  The message 

may not have been received by the target process. 

 
Slide source: Bill Gropp, ANL 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, 

comm, status) 

• Waits until a matching (both source and tag) message is 

received from the system, and the buffer can be used 

•source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE 

•tag is a tag to be matched on or MPI_ANY_TAG 

• receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error 

•status contains further information (e.g. size of message) 
Slide source: Bill Gropp, ANL 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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A Simple MPI Program 

#include “mpi.h” 

#include <stdio.h> 

int main( int argc, char *argv[]) 

{ 

  int rank, buf; 

  MPI_Status status; 

  MPI_Init(&argv, &argc);    

  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

 

  /* Process 0 sends and Process 1 receives */ 

  if (rank == 0) { 

    buf = 123456; 

    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 

  } 

  else if (rank == 1) { 

    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  

              &status ); 

    printf( “Received %d\n”, buf ); 

  } 

 

  MPI_Finalize(); 

  return 0; 

} 

Slide source: Bill Gropp, ANL 
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Retrieving Further Information 

•Status is a data structure allocated in the user’s program. 

• In C: 
int recvd_tag, recvd_from, recvd_count; 

MPI_Status status; 

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 

recvd_tag  = status.MPI_TAG; 

recvd_from = status.MPI_SOURCE; 

MPI_Get_count( &status, datatype, &recvd_count ); 

Slide source: Bill Gropp, ANL 
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Tags and Contexts 

• Separation of messages used to be accomplished by 

use of tags, but 

• this requires libraries to be aware of tags used by other 

libraries. 

• this can be defeated by use of “wild card” tags. 

• Contexts are different from tags 

• no wild cards allowed 

• allocated dynamically by the system when a library sets up a 

communicator for its own use. 

• User-defined tags still provided in MPI for user 

convenience in organizing application 

Slide source: Bill Gropp, ANL 
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MPI is Simple 

• Many parallel programs can be written using just these 

six functions, only two of which are non-trivial: 

•MPI_INIT 

•MPI_FINALIZE 

•MPI_COMM_SIZE 

•MPI_COMM_RANK 

•MPI_SEND 

•MPI_RECV 

Slide source: Bill Gropp, ANL 
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Another Approach to Parallelism 

• Collective routines provide a higher-level way to 

organize a parallel program 

• Each process executes the same communication 

operations 

• MPI provides a rich set of collective operations… 

Slide source: Bill Gropp, ANL 
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Collective Operations in MPI 

• Collective operations are called by all processes in a 

communicator 

•MPI_BCAST distributes data from one process (the 

root) to all others in a communicator 

•MPI_REDUCE combines data from all processes in 

communicator and returns it to one process 

• In many numerical algorithms, SEND/RECEIVE can be 

replaced by BCAST/REDUCE, improving both simplicity 

and efficiency 

Slide source: Bill Gropp, ANL 
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Example:  PI in C - 1 

#include "mpi.h" 

#include <math.h> 
#include <stdio.h> 

int main(int argc, char *argv[]) 

{ 

int done = 0, n, myid, numprocs, i, rc; 

double PI25DT = 3.141592653589793238462643; 

double mypi, pi, h, sum, x, a; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

while (!done)  { 

  if (myid == 0) { 

    printf("Enter the number of intervals: (0 quits) "); 

    scanf("%d",&n); 

  } 

  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

  if (n == 0) break; 

Slide source: Bill Gropp, ANL 
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Example:  PI in C - 2 

    h   = 1.0 / (double) n; 

  sum = 0.0; 

  for (i = myid + 1; i <= n; i += numprocs) { 

    x = h * ((double)i - 0.5); 

    sum += 4.0 / (1.0 + x*x); 

  } 

  mypi = h * sum; 

  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

             MPI_COMM_WORLD); 

  if (myid == 0) 

    printf("pi is approximately %.16f, Error is .16f\n", 

            pi, fabs(pi - PI25DT)); 

} 

MPI_Finalize(); 

  return 0; 

} 
Slide source: Bill Gropp, ANL 
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More on Message Passing 

• Message passing is a simple programming model, but 

there are some special issues 

• Buffering and deadlock 

• Deterministic execution 

• Performance  

Slide source: Bill Gropp, ANL 
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Buffers 

• When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

Slide source: Bill Gropp, ANL 
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Avoiding Buffering 

• Avoiding copies uses less memory 

• May use more or less time 

This requires that MPI_Send wait on delivery, or 
that MPI_Send return before transfer is complete, 

and we wait later. 

Process 0 Process 1 

User data 

User data 

the network 

Slide source: Bill Gropp, ANL 
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• Send a large message from process 0 to process 1 
• If there is insufficient storage at the destination, the send must 

wait for the user to provide the memory space (through a 
receive) 

• What happens with this code? 
 
 
 
 

 

Sources of Deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

• This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  

Slide source: Bill Gropp, ANL 
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• Will there  be a deadlock? 

• Assume tag/process ID is assigne properly. 
 
 
 
 

 

Sources of Deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

Slide source: Bill Gropp, ANL 
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Some Solutions to the “unsafe” Problem 

• Order the operations more carefully: 

• Supply receive buffer at same time as send: 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Recv(0) 

Send(0) 

Process 0 

 

Sendrecv(1) 

Process 1 

 
Sendrecv(0) 

Slide source: Bill Gropp, ANL 
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More Solutions to the “unsafe” Problem 

• Supply own space as buffer for send 

• Use non-blocking operations: 

Process 0 

 
Bsend(1) 

Recv(1) 

Process 1 

 
Bsend(0) 

Recv(0) 

Process 0 

 
Isend(1) 

Irecv(1) 

Waitall 

Process 1 

 
Isend(0) 

Irecv(0) 

Waitall 
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MPI’s Non-blocking Operations 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 
MPI_Request request; 

MPI_Status status; 

  MPI_Isend(start, count, datatype, 

    dest, tag, comm, &request); 

  MPI_Irecv(start, count, datatype, 

    dest, tag, comm, &request); 

  MPI_Wait(&request, &status); 

(each request must be Waited on) 

• One can also test without waiting: 
  MPI_Test(&request, &flag, &status); 

Slide source: Bill Gropp, ANL 
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Communication Modes 

• MPI provides multiple modes for sending messages: 
• Synchronous mode (MPI_Ssend):  the send does not complete 

until a matching receive has begun.  (Unsafe programs 

deadlock.) 

• Buffered mode (MPI_Bsend):  the user supplies a buffer to the 

system for its use.  (User allocates enough memory to make an 

unsafe program safe. 

• Ready mode (MPI_Rsend):  user guarantees that a matching 

receive has been posted. 

• Allows access to fast protocols 

• undefined behavior if matching receive not posted 

• Non-blocking versions (MPI_Issend, etc.) 

•MPI_Recv receives messages sent in any mode. 

• See www.mpi-forum.org for summary of all flavors of 

send/receive 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
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MPI Collective Communication 

• Communication and computation is coordinated among 

a group of processes in a communicator. 

• Groups and communicators can be constructed “by 

hand” or using topology routines. 

• Tags are not used; different communicators deliver 

similar functionality. 

• No non-blocking collective operations. 

• Three classes of operations: synchronization, data 

movement, collective computation. 
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Synchronization 

•MPI_Barrier( comm ) 

• Blocks until all processes in the group of the 

communicator comm call it. 

• Almost never required in a parallel program 

• Occasionally useful in measuring performance and load 

balancing 
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Collective Data Movement 

A 

B 

D 

C 

B C D 

A 

A 

A 

A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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Comments on Broadcast 

• All collective operations must be called by all processes 

in the communicator 

• MPI_Bcast is called by both the sender (called the root 

process) and the processes that are to receive the 

broadcast 

• MPI_Bcast is not a “multi-send” 

• “root” argument is the rank of the sender; this tells MPI which 

process originates the broadcast and which receive 



02/8/2011 CS267 Lecture 7 82 

More Collective Data Movement 

A 

B 

D 

C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 

B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 

A B C D 

A B C D 

A B C D 

Allgather 

Alltoall 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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Collective Computation 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

D 

C 

A 

B 

D 

C 

ABCD 

A 
AB 

ABC 

ABCD 

Reduce 

Scan 
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MPI Collective Routines 

• Many Routines:  Allgather, Allgatherv, 

Allreduce, Alltoall, Alltoallv, Bcast, 

Gather, Gatherv, Reduce, Reduce_scatter, 

Scan, Scatter, Scatterv 

•All versions deliver results to all participating 

processes. 

• V versions allow the hunks to have variable sizes. 

•Allreduce, Reduce, Reduce_scatter, and Scan 

take both built-in and user-defined combiner functions. 

• MPI-2 adds Alltoallw, Exscan, intercommunicator 

versions of most routines 
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MPI Built-in Collective Computation Operations 

• MPI_MAX 

• MPI_MIN 

• MPI_PROD 

• MPI_SUM 

• MPI_LAND 

• MPI_LOR 

• MPI_LXOR 

• MPI_BAND 

• MPI_BOR 

• MPI_BXOR 

• MPI_MAXLOC 

• MPI_MINLOC 

 

Maximum 

Minimum 

Product 

Sum 

Logical and 

Logical or 

Logical exclusive or 

Binary and 

Binary or 

Binary exclusive or 

Maximum and location 

Minimum and location 
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Not Covered 

• Topologies: map a communicator onto, say, a 3D 

Cartesian processor grid 

• Implementation can provide ideal logical to physical mapping 

• Rich set of I/O functions: individual, collective, blocking 

and non-blocking 

• Collective I/O can lead to many small requests being merged 

for more efficient I/O 

• One-sided communication: puts and gets with various 

synchronization schemes 

• Implementations not well-optimized and rarely used 

• Redesign of interface is underway 

• Task creation and destruction: change number of tasks 

during a run 

• Few implementations available 
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Implementing Synchronous Message Passing 

• Send operations complete after matching receive and 

source data has been sent. 

• Receive operations complete after data transfer is 

complete from matching send. 
                                                                     source                                           destination 

1) Initiate send                                     send (Pdest, addr, length,tag) rcv(Psource, addr,length,tag) 

2) Address translation on Pdest  

3) Send-Ready Request                                                              send-rdy-request 

                                                                                                                            

4) Remote check for posted receive                                                                  tag match                                                     

 

5) Reply transaction 

                                                                                                            receive-rdy-reply 

6) Bulk data transfer 

                                                       

                                                                                                data-xfer 
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Implementing Asynchronous Message Passing 

 

• Optimistic single-phase protocol assumes the 

destination can buffer data on demand. 

                                                                     source                                           destination 

1) Initiate send                                        send (Pdest, addr, length,tag)  

2) Address translation on Pdest  

3) Send Data  Request                                                              data-xfer-request 

                                                                                                                               tag match 

                                                                                                                               allocate                                                      

4) Remote check for posted receive  

5) Allocate buffer (if check failed) 

6) Bulk data transfer                                                                               

                                                                                                                rcv(Psource, addr, length,tag) 
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Safe Asynchronous Message Passing 

• Use 3-phase protocol 

• Buffer on sending side  

• Variations on send completion 

• wait until data copied from user to system buffer 

• don’t wait -- let the user beware of modifying data 

                                                                     source                                           destination 

1) Initiate send                                 

2) Address translation on Pdest  

3) Send-Ready Request                                                              send-rdy-request 

                                                                                                                            

4) Remote check for posted receive         return and continue                         tag match                                                     

             record send-rdy                                     computing 

5) Reply transaction 

                                                                                                            receive-rdy-reply 

6) Bulk data transfer 
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Books on MPI 

• Using MPI:  Portable Parallel Programming  

with the Message-Passing Interface (2nd edition),  

by Gropp, Lusk, and Skjellum, MIT Press,  

1999. 

• Using MPI-2:  Portable Parallel Programming  

with the Message-Passing Interface, by Gropp,  

Lusk, and Thakur, MIT Press, 1999. 

• MPI:  The Complete Reference - Vol 1 The MPI Core, by 

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 

Press, 1998. 

• MPI: The Complete Reference - Vol 2 The MPI Extensions, 

by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 

Saphir, and Snir, MIT Press, 1998. 

• Designing and Building Parallel Programs, by Ian Foster, 

Addison-Wesley, 1995. 

• Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997. 

Slide source: Bill Gropp, ANL 


