
CS240A, T. Yang, 2013

Modified from Demmel/Yelick’s

and Mary Hall’s Slides

1

Parallel
Programming with

OpenMP

2

Introduction to OpenMP

• What is OpenMP?

• Open specification for Multi-Processing

• “Standard” API for defining multi-threaded shared-memory

programs

• openmp.org – Talks, examples, forums, etc.

• High-level API

• Preprocessor (compiler) directives (~ 80%)

• Library Calls (~ 19%)

• Environment Variables (~ 1%)

http://www.openmp.org/

3

A Programmer’s View of OpenMP

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:

• Allow a programmer to separate a program into serial regions and
parallel regions, rather than T concurrently-executing threads.

• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

4

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;

 }

5

Motivation – OpenMP

 int main() {

 omp_set_num_threads(4);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

Printf Printf Printf Printf

OpenMP parallel region construct

• Block of code to be executed by multiple threads in

parallel

• Each thread executes the same code redundantly

(SPMD)

• Work within work-sharing constructs is distributed among the

threads in a team

• Example with C/C++ syntax

 #pragma omp parallel [clause [clause] ...] new-line

 structured-block

• clause can include the following:

private (list)

shared (list)

OpenMP Data Parallel Construct: Parallel Loop

• All pragmas begin: #pragma

• Compiler calculates loop bounds for each thread directly

from serial source (computation decomposition)

• Compiler also manages data partitioning

• Synchronization also automatic (barrier)

8

Programming Model – Parallel Loops

• Requirement for parallel loops

• No data dependencies

(reads/write or write/write

pairs) between iterations!

• Preprocessor calculates loop

bounds and divide iterations

among parallel threads

?

for(i=0; i < 25; i++)

{

 printf(“Foo”);

}

#pragma omp parallel for

OpenMp: Parallel Loops with Reductions

• OpenMP supports reduce operation

sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++) {

sum += array[i];

}

• Reduce ops and init() values (C and C++):

+ 0 bitwise & ~0 logical & 1

- 0 bitwise | 0 logical | 0

* 1 bitwise ^ 0

Example: Trapezoid Rule for Integration

• Straight-line approximation

)x(f)x(f
2

h

)x(fc)x(fc)x(fcdx)x(f

10

1100i

1

0i

i

b

a

x0 x1
x

f(x)

L(x)

Composite Trapezoid Rule

)x(f)x(f2)2f(x)f(x2)f(x
2

h

)f(x)f(x
2

h
)f(x)f(x

2

h
)f(x)f(x

2

h

f(x)dxf(x)dxf(x)dxf(x)dx

n1ni10

n1n2110

x

x

x

x

x

x

b

a

n

1n

2

1

1

0

n

ab
h

x0 x1
x

f(x)

x2 h h x3 h h x4

Serial algorithm for composite trapezoid rule

x

0

x

1

x

f(x)

x2 h h x3 h h x4

From Serial Code to Parallel Code

x

0

x

1

f(x)

x

2

h h x

3

h h x

4

14

Programming Model – Loop Scheduling

• schedule clause determines how loop iterations are

divided among the thread team
•static([chunk]) divides iterations statically between

threads

• Each thread receives [chunk] iterations, rounding as necessary to

account for all iterations

• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,

allocating an additional [chunk] iterations when a thread

finishes

• Forms a logical work queue, consisting of all loop iterations

• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is

exponentially reduced with each allocation

Loop scheduling options

2 (2)

Impact of Scheduling Decision

• Load balance

• Same work in each iteration?

• Processors working at same speed?

• Scheduling overhead

• Static decisions are cheap because they require no run-time

coordination

• Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions

• Data locality

• Particularly within cache lines for small chunk sizes

• Also impacts data reuse on same processor

More loop scheduling attributes

• RUNTIME The scheduling decision is deferred until

runtime by the environment variable OMP_SCHEDULE.

It is illegal to specify a chunk size for this clause.

• AUTO The scheduling decision is delegated to the

compiler and/or runtime system.

• NO WAIT / nowait: If specified, then threads do not

synchronize at the end of the parallel loop.

• ORDERED: Specifies that the iterations of the loop must

be executed as they would be in a serial program.

• COLLAPSE: Specifies how many loops in a nested loop

should be collapsed into one large iteration space and

divided according to the schedule clause (collapsed

order corresponds to original sequential order).

OpenMP environment variables

OMP_NUM_THREADS

 sets the number of threads to use during execution

 when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of

threads to use

 For example,

 setenv OMP_NUM_THREADS 16 [csh, tcsh]

 export OMP_NUM_THREADS=16 [sh, ksh, bash]

OMP_SCHEDULE

 applies only to do/for and parallel do/for directives that have the

schedule type RUNTIME

 sets schedule type and chunk size for all such loops

 For example,

 setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]

 export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

19

Programming Model – Data Sharing

• Parallel programs often employ

two types of data

• Shared data, visible to all

threads, similarly named

• Private data, visible to a single

thread (often stack-allocated)

• OpenMP:

• shared variables are shared

• private variables are private

• PThreads:

• Global-scoped variables are

shared

• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

20

Programming Model - Synchronization

• OpenMP Synchronization

• OpenMP Critical Sections

• Named or unnamed

• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions

• When all else fails – may

require flush directive

• Single-thread regions within

parallel regions

• master, single directives

#pragma omp critical

{

 /* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);

/* Code goes here */

omp_unset_lock(lock l);

#pragma omp single

{

 /* Only executed once */

}

CS267 Lecture 6 21

Microbenchmark: Grid Relaxation (Stencil)

for(t=0; t < t_steps; t++) {

 for(x=0; x < x_dim; x++) {

 for(y=0; y < y_dim; y++) {

 grid[x][y] = /* avg of neighbors */

 }

 }

}

#pragma omp parallel for \

 shared(grid,x_dim,y_dim) private(x,y)

// Implicit Barrier Synchronization

temp_grid = grid;

grid = other_grid;

other_grid = temp_grid;

CS267 Lecture 6 22

Microbenchmark: Ocean

CS267 Lecture 6 23

Microbenchmark: Ocean

25

OpenMP Summary

• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based

code

• Lightweight syntactic language extensions

• OpenMP performs comparably to manually-coded

threading

• Scalable

• Portable

• Not a silver bullet for all applications

CS267 Lecture 6 26

More Information

• openmp.org

• OpenMP official site

• www.llnl.gov/computing/tutorials/openMP/

• A handy OpenMP tutorial

• www.nersc.gov/nusers/help/tutorials/openmp/

• Another OpenMP tutorial and reference

http://www.openmp.org/
http://www.llnl.gov/computing/tutorials/openMP/
http://www.nersc.gov/nusers/help/tutorials/openmp/

