
CS240A, T. Yang, 2013

Modified from Demmel/Yelick’s

and Mary Hall’s Slides

1

Parallel
Programming with

OpenMP

2

Introduction to OpenMP

• What is OpenMP?

• Open specification for Multi-Processing

• “Standard” API for defining multi-threaded shared-memory

programs

• openmp.org – Talks, examples, forums, etc.

• High-level API

• Preprocessor (compiler) directives (~ 80%)

• Library Calls (~ 19%)

• Environment Variables (~ 1%)

http://www.openmp.org/

3

A Programmer’s View of OpenMP

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:

• Allow a programmer to separate a program into serial regions and
parallel regions, rather than T concurrently-executing threads.

• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

4

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;

 }

5

Motivation – OpenMP

 int main() {

 omp_set_num_threads(4);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

Printf Printf Printf Printf

OpenMP parallel region construct

• Block of code to be executed by multiple threads in

parallel

• Each thread executes the same code redundantly

(SPMD)

• Work within work-sharing constructs is distributed among the

threads in a team

• Example with C/C++ syntax

 #pragma omp parallel [clause [clause] ...] new-line

 structured-block

• clause can include the following:

private (list)

shared (list)

OpenMP Data Parallel Construct: Parallel Loop

• All pragmas begin: #pragma

• Compiler calculates loop bounds for each thread directly

from serial source (computation decomposition)

• Compiler also manages data partitioning

• Synchronization also automatic (barrier)

8

Programming Model – Parallel Loops

• Requirement for parallel loops

• No data dependencies

(reads/write or write/write

pairs) between iterations!

• Preprocessor calculates loop

bounds and divide iterations

among parallel threads

?

for(i=0; i < 25; i++)

{

 printf(“Foo”);

}

#pragma omp parallel for

OpenMp: Parallel Loops with Reductions

• OpenMP supports reduce operation

sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++) {

sum += array[i];

}

• Reduce ops and init() values (C and C++):

+ 0 bitwise & ~0 logical & 1

- 0 bitwise | 0 logical | 0

* 1 bitwise ^ 0

Example: Trapezoid Rule for Integration

• Straight-line approximation

 )x(f)x(f
2

h

)x(fc)x(fc)x(fcdx)x(f

10

1100i

1

0i

i

b

a






x0 x1
x

f(x)

L(x)

Composite Trapezoid Rule

     

 )x(f)x(f2)2f(x)f(x2)f(x
2

h

)f(x)f(x
2

h
)f(x)f(x

2

h
)f(x)f(x

2

h

f(x)dxf(x)dxf(x)dxf(x)dx

n1ni10

n1n2110

x

x

x

x

x

x

b

a

n

1n

2

1

1

0




















n

ab
h




x0 x1
x

f(x)

x2 h h x3 h h x4

Serial algorithm for composite trapezoid rule

x

0

x

1

x

f(x)

x2 h h x3 h h x4

From Serial Code to Parallel Code

x

0

x

1

f(x)

x

2

h h x

3

h h x

4

14

Programming Model – Loop Scheduling

• schedule clause determines how loop iterations are

divided among the thread team
•static([chunk]) divides iterations statically between

threads

• Each thread receives [chunk] iterations, rounding as necessary to

account for all iterations

• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,

allocating an additional [chunk] iterations when a thread

finishes

• Forms a logical work queue, consisting of all loop iterations

• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is

exponentially reduced with each allocation

Loop scheduling options

2 (2)

Impact of Scheduling Decision

• Load balance

• Same work in each iteration?

• Processors working at same speed?

• Scheduling overhead

• Static decisions are cheap because they require no run-time

coordination

• Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions

• Data locality

• Particularly within cache lines for small chunk sizes

• Also impacts data reuse on same processor

More loop scheduling attributes

• RUNTIME The scheduling decision is deferred until

runtime by the environment variable OMP_SCHEDULE.

It is illegal to specify a chunk size for this clause.

• AUTO The scheduling decision is delegated to the

compiler and/or runtime system.

• NO WAIT / nowait: If specified, then threads do not

synchronize at the end of the parallel loop.

• ORDERED: Specifies that the iterations of the loop must

be executed as they would be in a serial program.

• COLLAPSE: Specifies how many loops in a nested loop

should be collapsed into one large iteration space and

divided according to the schedule clause (collapsed

order corresponds to original sequential order).

OpenMP environment variables

OMP_NUM_THREADS

 sets the number of threads to use during execution

 when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of

threads to use

 For example,

 setenv OMP_NUM_THREADS 16 [csh, tcsh]

 export OMP_NUM_THREADS=16 [sh, ksh, bash]

OMP_SCHEDULE

 applies only to do/for and parallel do/for directives that have the

schedule type RUNTIME

 sets schedule type and chunk size for all such loops

 For example,

 setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]

 export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

19

Programming Model – Data Sharing

• Parallel programs often employ

two types of data

• Shared data, visible to all

threads, similarly named

• Private data, visible to a single

thread (often stack-allocated)

• OpenMP:

• shared variables are shared

• private variables are private

• PThreads:

• Global-scoped variables are

shared

• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

20

Programming Model - Synchronization

• OpenMP Synchronization

• OpenMP Critical Sections

• Named or unnamed

• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions

• When all else fails – may

require flush directive

• Single-thread regions within

parallel regions

• master, single directives

#pragma omp critical

{

 /* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);

/* Code goes here */

omp_unset_lock(lock l);

#pragma omp single

{

 /* Only executed once */

}

CS267 Lecture 6 21

Microbenchmark: Grid Relaxation (Stencil)

for(t=0; t < t_steps; t++) {

 for(x=0; x < x_dim; x++) {

 for(y=0; y < y_dim; y++) {

 grid[x][y] = /* avg of neighbors */

 }

 }

}

#pragma omp parallel for \

 shared(grid,x_dim,y_dim) private(x,y)

// Implicit Barrier Synchronization

temp_grid = grid;

grid = other_grid;

other_grid = temp_grid;

CS267 Lecture 6 22

Microbenchmark: Ocean

CS267 Lecture 6 23

Microbenchmark: Ocean

25

OpenMP Summary

• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based

code

• Lightweight syntactic language extensions

• OpenMP performs comparably to manually-coded

threading

• Scalable

• Portable

• Not a silver bullet for all applications

CS267 Lecture 6 26

More Information

• openmp.org

• OpenMP official site

• www.llnl.gov/computing/tutorials/openMP/

• A handy OpenMP tutorial

• www.nersc.gov/nusers/help/tutorials/openmp/

• Another OpenMP tutorial and reference

http://www.openmp.org/
http://www.llnl.gov/computing/tutorials/openMP/
http://www.nersc.gov/nusers/help/tutorials/openmp/

