Parallel
Programming with
OpenMP

CS240A, T. Yang, 2013
Modified from Demmel/Yelick’s
and Mary Hall’s Slides

Introduction to OpenMP

* What is OpenMP?

* Open specification for Multi-Processing

 “Standard” API for defining multi-threaded shared-memory
programs

« openmp.org — Talks, examples, forums, etc.

« High-level API
* Preprocessor (compiler) directives (~ 80%)
e Library Calls (~19%)
« Environment Variables (~1%)

http://www.openmp.org/

A Programmer’s View of OpenMP

* OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax
« Exact behavior depends on OpenMP implementation!
« Requires compiler support (C or Fortran)

* OpenMP will:

* Allow a programmer to separate a program into serial regions and
parallel regions, rather than T concurrently-executing threads.

« Hide stack management
* Provide synchronization constructs

* OpenMP will not:
 Parallelize automatically
« Guarantee speedup
* Provide freedom from data races

Motivation — OpenMP

int main() {

// Do this part in parallel
printf("Hello, World!\n");

return 0;

}

_Motivation —OpenMP

int main() {
omp set num threads(4);

// Do this part in parallel
#pragma omp parallel

{ M
printf("Hello, World!\n");

}

return 0;

OpenMP parallel region construct

* Block of code to be executed by multiple threads in
parallel

« Each thread executes the same code redundantly
(SPMD)

« Work within work-sharing constructs is distributed among the
threads in a team

« Example with C/C++ syntax
#pragma omp parallel [clause [clause | ...] new-line
structured-block
» clause can include the following:
private (list)
shared (list)

OpenMP Data Parallel Construct: Parallel Loop

* All pragmas begin: #pragma

« Compiler calculates loop bounds for each thread directly
from serial source (computation decomposition)

« Compiler also manages data partitioning

« Synchronization also automatic (barrier)

Serial Program: Parallel Program:

void main() void main()

{ {
double Res[1000]; double Res[1000];

#pragma omp parallel for
for(int i=0;i<1000;i++) { for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]); do_huge_comp({Res[i]);

}]

} }

_Programming Model — Parallel Loops

» Requirement for parallel loops

* No data dependencies
(reads/write or write/write
pairs) between iterations!

» Preprocessor calculates loop
bounds and divide iterations
among parallel threads

#pragma omp parallel for

for(i=0; i < 25; i++) l
{

printf (“Foo”) ;

OpenMp: Parallel Loops with Reductions

« OpenMP supports reduce operation
sum = 0;

#pragma omp parallel for reduction(+:sum)
for (i=0; 1< 100; i++) {

sum += array[i];

}

* Reduce ops and init() values (C and C++):
+ 0 bitwise & ~0 logical & 1

- 0 bitwise | O logical | O

* 1 bitwise » 0O

Example: Trapezoid Rule for Integration

 Straight-line approximation

Y— Z
C
" X
~
X [
X
=
Aol 3K
Y— <,
3 XW :
— .
+

XXXXX
<

c i++) |

x = (f(a) + £(b))/2.0;
_1)

//////

m Serial Code to Parallel Code

b
KKKKKK
(G(@ﬂ_

Fro

////H
J

e
fffffff
— 0

o~
_.dnﬂflk._l_

= -
xxxxxxxx

{{{{{{{

rrrrrr

Programming Model — Loop Scheduling

 schedule clause determines how loop iterations are

divided among the thread team
 static ([chunk]) divides iterations statically between
threads

« Each thread receives [chunkK] iterations, rounding as necessary to
account for all iterations

« Default [chunk] iSceil(# iterations / # threads)
« dynamic ([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread
finishes
 Forms a logical work queue, consisting of all loop iterations
 Default [chunk] is 1
* guided ([chunk]) allocates dynamically, but [chunk] IS
exponentially reduced with each allocation

14

Loop scheduling options

dynamic(3) guided{1)

static

(2)

BOOOO00O080O0000808

B [s o

I | | | | | |

Impact of Scheduling Decision

* Load balance
« Same work in each iteration?
» Processors working at same speed?

« Scheduling overhead

« Static decisions are cheap because they require no run-time
coordination

« Dynamic decisions have overhead that is impacted by
complexity and frequency of decisions
 Data locality
 Particularly within cache lines for small chunk sizes
 Also impacts data reuse on same processor

More loop scheduling attributes

« RUNTIME The scheduling decision is deferred until
runtime by the environment variable OMP_SCHEDULE.
It is illegal to specify a chunk size for this clause.

« AUTO The scheduling decision is delegated to the
compiler and/or runtime system.

« NO WAIT / nowait: If specified, then threads do not
synchronize at the end of the parallel loop.

« ORDERED: Specifies that the iterations of the loop must
be executed as they would be in a serial program.

« COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause (collapsed
order corresponds to original sequential order).

OpenMP environment variables

OMP_NUM_THREADS
= sets the number of threads to use during execution

= when dynamic adjustment of the number of threads is enabled, the
value of this environment variable is the maximum number of
threads to use

* For example,
setenv OMP_NUM_THREADS 16 [csh, tcsh]
export OMP_NUM_THREADS=16 [sh, ksh, bash]
OMP_SCHEDULE

= applies only to do/for and parallel do/for directives that have the
schedule type RUNTIME

» sets schedule type and chunk size for all such loops

» For example,
setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

Programming Model — Data Sharing

» Parallel programs often employ // shared, globals
two types of data ’

e Shared data, visible to all
threads, similarly named

 Private data, visible to a single
thread (often stack-allocated)

int bigdata[1024];

void* foo(void* bar) ({

iritptidate, stack

 PThreads:
» Global-scoped variables are int tid;
shared #pragma omp parallel \
« Stack-allocated variables are ,
orivate /shaaddulabigdagees \
prhease*(tid)
 OpenMP:
. shared variables are shared }
« private variables are private /* Calc. here */

19

Programming Model - Synchronization

* OpenMP Synchronization

« OpenMP Critical Sections
« Named or unnamed
* No explicit locks / mutexes

#pragma omp critical
{
/* Critical code here */

}

 Barrier directives .
#pragma omp barrier

 Explicit Lock functions omp set lock(lock 1);
* When all else fails — may /* Code goes here */
require flush directive omp unset lock(lock 1);

* Single-thread regions within #pragma omp single
parallel regions {
. . %* *
- master, single directives /* Only executed once */

}

20

Microbenchmark: Grid Relaxation (Stencil

for(t=0; t < t _steps; t++) {

for

for(x=0; x < x dim; x++) {
for(y=0; y < y_dim; y++) {
grid[x] [y] = /* avg of neighbors */
}
}

// Implicit Barrier Synchronization

temp grid = grid;
grid = other grid;
} other grid = temp grid;

CS267 Lecture 6

Microbenchmark: Ocean

R
[R i U &)

-
o

Normalized Speedup
QO

Normalized Speedup, Ocean 2050x2050

il

m

Dynamic

1 1

Static Squares Pthreads
Threading Strategy

=E1p
m2p
O4dp
O8p
m16p

CS267 Lecture 6

22

Microbenchmark: Ocean

Normalized Speedup
B o NN n (@) -] QO O

o -

Normalized Speedup, Ocean 258x258

1 I I

Dynamic Static Squares Pthreads
Threading Strategy

@ 1p
mZp
O4dp
O8p
m16p

CS267 Lecture 6

23

OpenMP Summary

« OpenMP is a compiler-based technigue to create
concurrent code from (mostly) serial code

« OpenMP can enable (easy) parallelization of loop-based
code
* Lightweight syntactic language extensions

« OpenMP performs comparably to manually-coded
threading
« Scalable
 Portable

* Not a silver bullet for all applications

25

More Information

e Openmp.org
* OpenMP official site

« www.lInl.gov/computing/tutorials/openMP/
« A handy OpenMP tutorial

« www.nersc.gov/nusers/help/tutorials/openmp/
« Another OpenMP tutorial and reference

CS267 Lecture 6

26

http://www.openmp.org/
http://www.llnl.gov/computing/tutorials/openMP/
http://www.nersc.gov/nusers/help/tutorials/openmp/

