
1

Parallel Programming with

Threads

CS 240A
Tao Yang, 2013

4.2

2

Thread Programming with Shared Memory

 Program is a collection of threads of control.

 Can be created dynamically, mid-execution, in some languages

 Each thread has a set of private variables, e.g., local stack variables

 Also a set of shared variables, e.g., static variables, shared common

blocks, or global heap.

 Threads communicate implicitly by writing and reading shared variables.

 Threads coordinate by synchronizing on shared variables

Pn P1 P0

s
s = ...

y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

4.3

Logical View of Threads

 Threads associated with a process

P1

sh sh sh

foo

T1

Process hierarchy A process

T2
T4

T5 T3

shared code, data
and kernel context

4.4

Benefits of multi-threading

Responsiveness

Resource Sharing

Shared memory

Economy

Scalability

Explore multi-core CPUs

2

4.5

Concurrent Thread Execution

 Two threads run concurrently (are concurrent) if their logical flows overlap in

time

 Otherwise, they are sequential (we’ll see that processes have a similar

rule)

 Examples:

 Concurrent: A & B, A&C

 Sequential: B & C

Time

Thread A Thread B Thread C

4.6

Execution Flow

Concurrent execution on a single core system

Parallel execution on a multi-core system

4.7

Difference between Single and

Multithreaded Processes

Shared memory access for code/data

Separate control flow -> separate stack/registers

4.8

Threads vs. Processes

 How threads and processes are similar

Each has its own logical control flow

Each can run concurrently

Each is context switched

 How threads and processes are different

 Threads share code and data, processes

(typically) do not

 Threads are somewhat cheaper than

processes with less overhead

3

4.9

9

Shared Memory Programming

Several Thread Libraries/systems

 PTHREADS is the POSIX Standard

 Relatively low level

 Portable but possibly slow; relatively heavyweight

 OpenMP standard for application level programming

 Support for scientific programming on shared memory

 http://www.openMP.org

 TBB: Thread Building Blocks

 Intel

 CILK: Language of the C “ilk”

 Lightweight threads embedded into C

 Java threads

 Built on top of POSIX threads

 Object within Java language

4.10

10

Common Notions of Thread Creation

 cobegin/coend

cobegin

 job1(a1);

 job2(a2);

coend

 fork/join

tid1 = fork(job1, a1);

job2(a2);

join tid1;

 future

v = future(job1(a1));

… = …v…;

• Statements in block may run in parallel

• cobegins may be nested

• Scoped, so you cannot have a missing
coend

• Future expression evaluated in
parallel

• Attempt to use return value will

wait

• Forked procedure runs in parallel

• Wait at join point if it’s not finished

4.11

11

Overview of POSIX Threads

 POSIX: Portable Operating System Interface for UNIX

 Interface to Operating System utilities

 PThreads: The POSIX threading interface

 System calls to create and synchronize threads

 In CSIL, compile a c program with gcc -lpthread

 PThreads contain support for

 Creating parallelism and synchronization

 No explicit support for communication, because

shared memory is implicit; a pointer to shared data

is passed to a thread

4.12

Pthreads: Create threads

http://www.openMP.org

4

4.13

13

Forking Posix Threads

 thread_id is the thread id or handle (used to halt, etc.)

 thread_attribute various attributes

 Standard default values obtained by passing a NULL pointer

 Sample attribute: minimum stack size

 thread_fun the function to be run (takes and returns void*)

 fun_arg an argument can be passed to thread_fun when it starts

 errorcode will be set nonzero if the create operation fails

Signature:
 int pthread_create(pthread_t *,

 const pthread_attr_t *,

 void * (*)(void *),

 void *);

Example call:
 errcode = pthread_create(&thread_id; &thread_attribute

 &thread_fun; &fun_arg);

4.14

Some More Pthread Functions

 pthread_yield();

 Informs the scheduler that the thread is willing to yield its quantum,

requires no arguments.

 pthread_exit(void *value);

 Exit thread and pass value to joining thread (if exists)

 pthread_join(pthread_t *thread, void **result);

 Wait for specified thread to finish. Place exit value into *result.

Others:

 pthread_t me; me = pthread_self();

 Allows a pthread to obtain its own identifier pthread_t thread;

Pthreads: 14

1/5/2013

4.15

Posix Threads (Pthreads) Interface

 Creating and reaping threads

 pthread_create, pthread_join

 Determining your thread ID

 pthread_self

 Terminating threads

 pthread_cancel, pthread_exit

 exit [terminates all threads] , return [terminates current

thread]

 Synchronizing access to shared variables

 pthread_mutex_init, pthread_mutex_[un]lock

 pthread_cond_init, pthread_cond_[timed]wait

4.16

Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

5

4.17

Example of Pthreads with join

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

 pthread_join(thread0, NULL);

 pthread_join(thread1, NULL);

}

4.18

Execution of Threaded “hello, world”

main thread

peer thread

main thread waits for
peer thread to terminate

exit()

terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()
returns

printf()

(peer thread
terminates)

4.19

Types of Threads: Kernel vs user-level

Kernel Threads

 Recognized and supported by the OS Kernel

 OS explicitly performs scheduling and context switching

of kernel threads

4.20

User-level Threads

 Thread management done by user-level threads library

 OS kernel does not know/recognize there are multiple

threads running in a user program.

 The user program (library) is responsible for

scheduling and context switching of its threads.

 Examples:

 Java threads

6

4.21

Recall Data Race Example

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

•Also called critical section problem.

•A race condition or data race occurs when:

- two processors (or two threads) access the
same variable, and at least one does a write.

- The accesses are concurrent (not
synchronized) so they could happen
simultaneously

4.22

Synchronization Solutions

 acquire lock

 critical section

 release lock

 remainder section

1.Locks (mutex)

2.Semaphore

3.Conditional Variables

4.Barriers

4.23

Synchronization primitive: Mutex

pthread_mutex_t mutex;
const pthread_mutexattr_t attr;
int status;

status =
pthread_mutex_init(&mutex,&attr);

status =
pthread_mutex_destroy(&mutex);

status = pthread_mutex_unlock(&mutex);

status = pthread_mutex_lock(&mutex);

Thread i

……
lock(mutex)

……
critical region

……
unlock(mutex)

……

4.24

Semaphore: Generalization from locks

 Semaphore S – integer variable

 Can only be accessed /modified via two indivisible
(atomic) operations

 wait (S) { //also called P()

 while S <= 0

 ; // wait

 S--;

 }

 post(S) { //also called V()

 S++;

 }

7

4.25

Semaphore for Pthreads

int status,pshared;

sem_t sem;

unsigned int initial_value;

status = sem_init(&sem,pshared,initial_value);

status = sem_destroy(&sem);

status = sem_post(&sem);

 -increments (unlocks) the semaphore
pointed to by sem

status = sem_wait(&sem);

 -decrements (locks) the semaphore pointed
to by sem

4.26

Deadlock and Starvation

 Deadlock – two or more processes (or threads) are waiting
indefinitely for an event that can be only caused by one of these
waiting processes

 Starvation – indefinite blocking. A process is in a waiting queue
forever.

 Let S and Q be two locks:

 P0 P1

 Acquire(S); Acquire(Q);

 Acquire (Q); Acquire (S);

 . .

 . .

 . .

 Release (Q); Release(S);

 Release (S); Release(Q);

4.27

Deadlock Avoidance

 Order the locks and always acquire the locks in that order.

 Eliminate circular waiting

 P0 P1

 Acquire(S); Acquire(S);

 Acquire(Q); Acquire (Q);

 . .

 . .

 . .

 Release(Q); Release (Q);

 Release(S); Release (S);

4.28

Synchronization Example for Readers-Writers Problem

 A data set is shared among a number of concurrent processes.

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

 Requirement:

 allow multiple readers to read at the same time.

 Only one writer can access the shared data at the same

time.

 Reader/writer access permission table:

Reader Writer

Reader OK No

Writer NO No

8

4.29

Readers-Writers (First try with 1 lock)

 writer

 do {

 wrt.Acquire(); // wrt is a lock

 // writing is performed

 wrt.Release();

 } while (TRUE);

 Reader

 do {

 wrt.Acquire(); // Use wrt lock

 // reading is performed

 wrt.Release();

 } while (TRUE);

Reader Writer

Reader ? ?

Writer ? ?

4.30

Readers-Writers (First try with 1 lock)

 writer

 do {

 wrt.Acquire(); // wrt is a lock

 // writing is performed

 wrt.Release();

 } while (TRUE);

 Reader

 do {

 wrt.Acquire(); // Use wrt lock

 // reading is performed

 wrt.Release();

 } while (TRUE);

Reader Writer

Reader NO NO

Writer NO NO

4.31

2nd try using a lock + readcount

 writer

 do {

 wrt.Acquire(); // Use wrt lock

 // writing is performed

 wrt.Release();

 } while (TRUE);

 Reader

 do {

 readcount++; // add a reader counter.

 if(readcount==1) wrt.Acquire();

 // reading is performed

 readcount--;

 if(readcount==0) wrt.Release();

 } while (TRUE); 4.32

You may also use a binary semaphore

 writer

 do {

 wrt.P(); // Use wrt semaphore with initial value=1

 // writing is performed

 wrt.V();

 } while (TRUE);

 Reader

 do {

 readcount++; //initial value=0

 if(readcount==1) wrt.P();

 // reading is performed

 readcount--;

 if(readcount==0) wrt.V();

 } while (TRUE);

What’s wrong with this?

readcount is not protected

9

4.33

Readers-Writers Problem with

semaphone

Shared Data

Data set

Semaphore mutex initialized to 1

Semaphore wrt initialized to 1

 Integer readcount initialized to 0

4.34

Readers-Writers Problem (textbook)

 The structure of a writer process

 do {

 wrt.P() ; //Lock wrt

 // writing is performed

 wrt.V() ; //Unlock wrt

 } while (TRUE);

4.35

Readers-Writers Problem (Cont.)
 The structure of a reader process

 do {

 mutex.P() ;

 readcount ++ ;

 if (readcount == 1)

 wrt.P() ;

 mutex.V()

 // reading is performed

 mutex.P() ;

 readcount - - ;

 if (readcount == 0)

 wrt.V() ;

 mutex.V() ;

 } while (TRUE);

4.36

Synchronization Primitive: Condition Variables

Used together with a lock

One can specify more general waiting
condition compared to semaphores.

Avoid busy waiting in spin locks

Let the waiting thread be blocked,
placed in a waiting queue, yielding
CPU resource to somebody else.

10

4.37

Pthread synchronization: Condition

variables

int status; pthread_condition_t cond;

const pthread_condattr_t attr;

pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);

status = pthread_cond_destroy(&cond);

status = pthread_cond_wait(&cond,&mutex);

 -wait in a queue until somebody wakes up. Then the

mutex is reacquired.

status = pthread_cond_signal(&cond);

 - wake up one waiting thread.

status = pthread_cond_broadcast(&cond);

 - wake up all waiting threads in that condition

4.38

 Thread 1

Lock(mutex);

 While (condition is not satisfied)

 Wait(mutex, cond);

 Critical Section;

Unlock(mutex)

 Thread 2:

Lock(mutex);

When condition can satisfy, Signal(mylock);

Unlock(mutex);

How to Use Condition Variables: Typical Flow

4.39

Synchronization primitive: Barriers

4.40

40

Barrier -- global synchronization

Especially common when running multiple copies of

the same function in parallel

SPMD “Single Program Multiple Data”

 simple use of barriers -- all threads hit the same one
 work_on_my_subgrid();

 barrier;

 read_neighboring_values();

 barrier;

more complicated -- barriers on branches (or loops)
 if (tid % 2 == 0) {

 work1();

 barrier

 } else { barrier }

 barriers are not provided in all thread libraries

Barrier in Pthreads

11

4.41

41

Creating and Initializing a Barrier
 To (dynamically) initialize a barrier, use code similar to this (which sets

the number of threads to 3):

pthread_barrier_t b;

pthread_barrier_init(&b,NULL,3);

 The second argument specifies an attribute object for finer control; using

NULL yields the default attributes.

 To wait at a barrier, a process executes:

pthread_barrier_wait(&b);

4.42 42

Implement a simple barrier

int count=0;

barrier(N) { //for N threads

 count ++;

 while (count <N);

}

What’s wrong with this?

4.43

What to check for synchronization

 Access to EVERY share variable is
synchronized with a lock

No busy waiting:

Wait when the condition is not met

Call condition-wait() after holding a
lock/detecting the condition

4.44 44

Implement a barrier

int count=0;

barrier(N) { //for N threads

 Lock(m);

 count ++;

 while (count <N)

 Wait(m, mycondition);

 if(count==N) {

 Broadcast(mycondition);

 count=0;

 }

 Unlock(m);

}

What’s wrong with this?

Count=N for next
barrier() called in
another thread

12

4.45

Barriers called multiple times

barrier(3);

barrier(3);

4.46

Summary of Programming with Threads
 POSIX Threads are based on OS features

 Can be used from multiple languages (need appropriate header)

 Familiar language for most of program

 Ability to shared data is convenient

 Pitfalls

 Data race bugs are very nasty to find because they can be intermittent

 Deadlocks are usually easier, but can also be intermittent

 OpenMP is commonly used today as an alternative

