\«Iﬁfr:aad Programming with Shared Memory

® Program is a collection of threads of control.
e Can be created dynamically, mid-execution, in some languages

Paral I el PI’O g rammin g W |th ® Each thread has a set of private variables, e.g., local stack variables
m Also a set of shared variables, e.g., static variables, shared common
Th read S blocks, or global heap.
[T T e Threads communicate implicitly by writing and reading shared variables.

e Threads coordinate by synchronizing on shared variables

:

i

CS 240A
Tao Yang, 2013

y=.s. @

L]
o

i Logical View of Threads 4%’ Benefits of multi-threading
® Threads associated with a process ® Responsiveness Process
hread #1 Thread #2
A process Process hierarchy m Resource Shal’lng E % ®
e Shared memory % E
and kernel contpxt

® Economy v
556

(fop ® Scalability -
e Explore multi-core CPUs =L

43 a4 ey

=

) .
- > Concurrent Thread Execution

® Two threads run concurrently (are concurrent) if their logical flows overlap in

time

m Otherwise, they are sequential (we'll see that processes have a similar

rule)
m Examples:
e Concurrent: A & B, A&C
e Sequential: B & C

Thread A Thread B Thread C

Time

_~ Dburrerence between Single and
A o1 Multithreaded Processes

Shared memory access for code/data
Separate control flow -> separate stack/registers

I code || data || files ‘ | code || data H files ‘
Iregislsrsl stack registers | [registers ||| registers

stack stack stack

thread —> ; ; ; ;‘—- thread

single-threaded process multithreaded process

=
(W .
r i Execution Flow

Concurrent execution on a single core system

singlecore | Ty ‘ Te ‘ T ‘ T | T | T | T | T ‘ Tt ‘

time

Parallel execution on a multi-core system

core1\T1‘T3‘T1IT3‘T1‘...‘

core 2 ‘ Ta

T4‘T2’T4‘T2

time

46

-
)
\..vs'/

Threads vs. Processes

®m How threads and processes are similar
e Each has its own logical control flow
e Each can run concurrently
e Each is context switched

®m How threads and processes are different

e Threads share code and data, processes
(typically) do not

e Threads are somewhat cheaper than
processes with less overhead

\«Sﬁé‘red Memory Programming

Several Thread Libraries/systems
m PTHREADS is the POSIX Standard
e Relatively low level
e Portable but possibly slow; relatively heavyweight
® OpenMP standard for application level programming
e Support for scientific programming on shared memory
L]
m TBB: Thread Building Blocks
e Intel
® CILK: Language of the C “ilk”
e Lightweight threads embedded into C

Java threads
e Built on top of POSIX threads
e Object within Java language

“$¥7 Overview of POSIX Threads

m POSIX: Portable Operating System Interface for UNIX
o Interface to Operating System utilities
® PThreads: The POSIX threading interface
e System calls to create and synchronize threads
e In CSIL, compile a ¢ program with gcc -Ipthread
® PThreads contain support for
e Creating parallelism and synchronization

e No explicit support for communication, because
shared memory is implicit; a pointer to shared data
is passed to a thread

11

w:@ommon Notions of Thread Creation

m cobegin/coend

cobegin « Statements in block may run in parallel
jobl(al) ; « cobegins may be nested
job2 (a2) ; * Scoped, so you cannot have a missing
coend coend
m fork/join

job2 (a2) ;
join tidl;

tidl = fork(jobl,
T' Wait at join point if it’s not finished

1) -
«'Forked procedure runs in parallel ‘

m future * Future expression evaluated in
v = future(jobl(al)); parallel
= v.: * Attempt to use return value will
L= v wat
10
- Pthreads: Create threads
process thread
fork pthread_create
" return/exit -~ return
‘waltpid ‘pthread_join
Y Y

http://www.openMP.org

=

«§%’ Forking Posix Threads

Signature:
int pthread_create (pthread_t *,
const pthread_attr_t *,
void * (*) (void *),
void *);

Example call:
errcode = pthread create (&thread_id; s&thread_attribute
&thread fun; &fun_arg);

is the thread id or handle (used to halt, etc.)
various attributes
e Standard default values obtained by passing a NULL pointer
o Sample attribute: minimum stack size
the function to be run (takes and returns void*)
an argument can be passed to thread_fun when it starts

will be set nonzero if the create operation fails
13

413

¢ 5}:; Posix Threads (Pthreads) Interface

m Creating and reaping threads

® pthread create, pthread join
m Determining your thread ID

® pthread_self
® Terminating threads

® pthread_cancel, pthread exit

e exit [terminates all threads] , return [terminates current
thread]

m Synchronizing access to shared variables
® pthread mutex init, pthread mutex_[un]lock

® pthread cond_init, pthread cond_ [timed]wait

S

=

<55 Some More Pthread Functions

B pthread_yield();

e Informs the scheduler that the thread is willing to yield its quantum,
requires no arguments.

B pthread exit(void *value);

e Exit thread and pass value to joining thread (if exists)

B pthread join(pthread t *thread, void **result);

e Wait for specified thread to finish. Place exit value into *result.

Others:

B pthread t me; me = pthread self();

o Allows a pthread to obtain its own identifier pthread_t thread;

Pthreads: 14

/57012 a4

=

(O iy

55 Example of Pthreads

thread
#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){
printf(“Thread%d: Hello World\n", id);
}

pthread_create

pthread_create

void main (){
pthread_t thread0, thread1; !
pthread_create(&threadO, NULL, PrintHello, (void *) 0);
pthread_create(&threadl, NULL, PrintHello, (void *) 1);
}

=
.
e ;‘b,"

Example of Pthreads with join

thread
#include <pthread.h> pthread_create
#include <stdio.h>
void *PrintHello(void * id){ pthread_create
printf(“Thread%d: Hello World!\n", id);
}

void main (){
pthread_t thread0, thread1; !
pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&threadl, NULL, PrintHello, (void *) 1);
pthread_join(thread0, NULL);
pthread_join(thread1, NULL);

“$Types of Threads: Kernel vs user-level

Kernel Threads

m Recognized and supported by the OS Kernel

m OS explicitly performs scheduling and context switching
of kernel threads 2 : 2

¢

User
Space

Kernel
Space

®
.

- *;:Execution of Threaded “hello, world”

call Pthread_create() ...
................................ peer thread
call Pthread_join() +
| printf ()
main thread waits for !
eer thread to terminate, e (peer thread
L e terminates)
Pthread_join() "
returns
exit ()
terminates

main thread and
any peer threads

)
b L/

User-level Threads

®m Thread management done by user-level threads library

e OS kernel does not know/recognize there are multiple
threads running in a user program.

e The user program (library) is responsible for
scheduling and context switching of its threads.

m Examples: 5 ﬁ 5
e Java threads e User
Library Space
Kernel
Space

@

=

i Recall Data Race Example

static int s = 0}

Thread 1 Thread 2

fori =0, n/2-1| fori=n/2, n-1
s = s + f(A[i]) s = s + f(A[i])

e Also called critical section problem.
¢ A race condition or data race occurs when:
-two processors (or two threads) access the

same variable, and at least one does a write.

-The accesses are concurrent (not
synchronized) so they could happen
simultaneously

b Synchronization primitive: Mutex

pthread_mutex_t mutex;
const pthread_mutexattr_t attr;
int status;

status =
pthread_mutex_init(&mutex, &attr);

status =
pthread_mutex_destroy(&mutex);

status = pthread_mutex_unlock(&mutex);
status = pthread_mutex_lock(&mutex);

=

)
b i."/

Synchronization Solutions

1.Locks (mutex)

critical section

release lock

remainder section

2.Semaphore
3.Conditional Variables
4.Barriers

3 *%emaphore: Generalization from locks

® Semaphore S - integer variable

m Can only be accessed /modified via two indivisible
(atomic) operations

e wait (S) { /lalso called P()
while S<=0
3 /] wait
S-;
}
e post(S){ //also called V()
S++;

}

-

- Semaphore for Pthreads

int status,pshared;
sem_t sem;
unsigned int initial_value;

status

sem_init(&sem,pshared,initial_value);
status = sem_destroy(&sem);
status = sem_post(&sem);

-increments (unlocks) the semaphore
pointed to by sem

status = sem_wait(&sem);

-decrements (locks) the semaphore pointed
to by sem

Deadlock Avoidance

m Order the locks and always acquire the locks in that order.
m Eliminate circular waiting

Po Py
Acquire(S); Acquire(S);
Acquire(Q); Acquire (Q);
Release(Q); Release (Q);
Release(S); Release (S);

-

- Deadlock and Starvation

m Deadlock — two or more processes (or threads) are waiting
indefinitely for an event that can be only caused by one of these
waiting processes

m Starvation — indefinite blocking. A process is in a waiting queue
forever.

m LetS and Q be two locks:

Py Py
Acquire(S); Acquire(Q);
Acquire (Q); Acquire (S);
Release (Q); Release(S);
Release (S); Release(Q);

Synchronization Example for Readers-Writers Problem

m Adata set is shared among a number of concurrent processes.

o Readers — only read the data set; they do not perform any
updates

e Writers — can both read and write
® Requirement:
o allow multiple readers to read at the same time.

e Only one writer can access the shared data at the same
time.

m Reader/writer access permission table:

Reader OK No
Writer NO No

> iy)) .
“%7" Readers-Writers (First try with 1 lock)

| writer
do {
wrt.Acquire(); // wrt is a lock
/I writing is performed
wrt.Release(); -
} while (TRUE); Reie B >
B Reader Writer 2 ?
do {
wrt.Acquire(); // Use wrt lock
/I reading is performed
wrt.Release();
} while (TRUE);

-

“#77 2ndytry using alock + readcount

| writer
do {
wrt.Acquire(); // Use wrt lock
/I writing is performed
wrt.Release();
} while (TRUE);
m Reader

do{
readcount++; // add a reader counter.

if(readcount==1) wrt.Acquire();
/I reading is performed
readcount--;
if(readcount==0) wrt.Release();
} while (TRUE); 431

= _ . .
“%7 Readers-Writers (First try with 1 lock)

| writer
do {
wrt.Acquire(); // wrt is a lock
/I writing is performed
wrt.Release(); -
}while (TRUE); Reader NO NO
B Reader Writer NO NO

do {
wrt.Acquire(); // Use wrt lock
/I reading is performed
wrt.Release();
} while (TRUE);

-

) .
4 You may also use a binary semaphore
| writer
do {
wrt.P(); // Use wrt semaphore with initial value=1
/I writing is performed
wrt.V();
} while (TRUE); What's wrong with this?
= Reader readcount is not protected
do{
readcount++; //initial value=0
if(readcount==1) wrt.P();
/I reading is performed
readcount--;
if(readcount==0) wrt.V();
} while (TRUE); 432

b

~ Readers-writers Froplem with
e semaphone

m Shared Data
e Data set
e Semaphore mutex initialized to 1
e Semaphore wrt initialized to 1
e Integer readcount initialized to 0

%7 Readers-Writers Problem (Cont.)

=

- *_»:’j Readers-Writers Problem (textbook)

m The structure of a reader process
do {
mutex.P() ;
readcount ++ ;
if (readcount == 1)
wrt.P() ;
mutex.V()
/I reading is performed

mutex.P() ;
readcount - -;
if (readcount == 0)
wrt.V() ;
mutex.V() ;
} while (TRUE);

m The structure of a writer process

do {
wrt.P() ; //Lock wrt

/l writing is performed
wrt.V() ; //Unlock wrt

} while (TRUE);

434

[Py o o .)
P 'Synchronlzatlon Primitive: Condition Variables

m Used together with a lock

m One can specify more general waiting
condition compared to semaphores.
m Avoid busy waiting in spin locks

Let the waiting thread be blocked,
placed in a waiting queue, vyielding
CPU resource to somebody else.

Kinread syncnronization: conaition

““?} variables

=
““?Fgw to Use Condition Variables: Typical Flow

int status; pthread_condition_t cond;
const pthread_condattr_t attr;
pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);
status = pthread_cond_destroy(&cond);
status = pthread_cond_wait(&cond,&mutex);

-wait in a queue until somebody wakes up. Then the
mutex is reacquired.

status = pthread_cond_signal(&cond);
- wake up one waiting thread.
status = pthread_cond_broadcast(&cond);

- wake up all waiting threads in that condition

437

=
“‘f’ Synchronization primitive: Barriers

P P2 P3
Barrier-3
|
wait | wait
!
i Barriar-3
l l v
Proceed

e Thread 1

hﬁ‘ Barrier in Pthreads

e Especially common when running multiple copies of
the same function in parallel
» SPMD “Single Program Multiple Data”
o simple use of barriers -- all threads hit the same one
work_on_my_subgrid();
barrier;
read neighboring values() ;

barrier;
e more complicated -- barriers on branches (or loops)
if (tid % 2 == 0) {
workl () ;
barrier

} else { barrier }

e barriers are not provided in all thread librages

440

10

=

~%7/ Creating and Initializing a Barrier

m To (dynamically) initialize a barrier, use code similar to this (which sets
the number of threads to 3):

pthread barrier t b;
pthread barrier_init(&b,NULL,3);

m The second argument specifies an attribute object for finer control; using
NULL yields the default attributes.

® To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

41

P L
~#77 What to check for synchronization

® Access to EVERY share variable is
synchronized with a lock

®m No busy waiting:
e Wait when the condition is not met

e Call condition-wait() after holding a
lock/detecting the condition

-

o : :
- Implement a simple barrier

int count=0;
barrier (N) { //for N threads
count ++;

while (count <N);

What's wrong with this?

a2 42

=

&

3
r i Implement a barrier

int count=0;

barrier(N) { //for N threads
Lock (m) ;
count ++;
while (count <N) What's wrong with this?
Wait(m, mycondition) ;
if (count==N) {
Broadcast (mycondition) ;

count=0;
} Count=N for next
Unlock (m) ; barrier() called in
} another thread

aa 44

11

)

e ;5,"

=

Barriers called multiple times

P1

P2

"]

I Barrier-3

[Bamiera

wait valt
Barrier3
Pt P2 P3 l
I Barrier-2
Barrier-3
wait walt

!

Procesd

barrier(3);

barrier(3);

=

“éﬁmmary of Programming with Threads

B POSIX Threads are based on OS features
o Can be used from multiple languages (need appropriate header)
e Familiar language for most of program
® Ability to shared data is convenient

= Pitfalls
o Data race bugs are very nasty to find because they can be intermittent
o Deadlocks are usually easier, but can also be intermittent

® OpenMP is commonly used today as an alternative

12

