
Tree Computation for Ranking

and Classification

CS240A, T. Yang, 2016

Outlines

• Decision Trees

• Learning Assembles:

 Random forest, boosted trees

Decision Trees

• Decision trees can express any function of the input attributes.

• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x)
but it probably won't generalize to new examples

• Prefer to find more compact decision trees: we don’t want to
memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a
restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some,
Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60,
>60)

A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.

Training data: Restaurant example

• Examples described by attribute values (Boolean, discrete,

continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

Decision tree learning

• If there are so many possible trees, can we actually

search this space? (solution: greedy search).

• Aim: find a small tree consistent with the training

examples

• Idea: (recursively) choose "most significant"

attribute as root of (sub)tree.

Example: Decision tree learned

• Decision tree learned from the 12 examples:

9

Learning Ensembles

• Learn multiple classifiers separately

• Combine decisions (e.g. using weighted voting)

• When combing multiple decisions, random errors
cancel each other out, correct decisions are
reinforced.

Training Data

Data1 Data m Data2

Learner1 Learner2 Learner m

Model1 Model2 Model m

Model Combiner Final

Model

Homogenous Ensembles

• Use a single, arbitrary learning algorithm
but manipulate training data to make it
learn multiple models.
 Data1 Data2 … Data m

 Learner1 = Learner2 = … = Learner m

• Methods for changing training data:
 Bagging: Resample training data

 Boosting: Reweight training data

 DECORATE: Add additional artificial training data

Training Data

Data1 Data m Data2

Learner1 Learner2 Learner m

11

Bagging

• Create ensembles by repeatedly randomly resampling
the training data (Brieman, 1996).

• Given a training set of size n, create m sample sets
 Each bootstrap sample set will on average contain 63.2% of

the unique training examples, the rest are replicates.

• Combine the m resulting models using majority vote.

• Decreases error by decreasing the variance in the
results due to unstable learners, algorithms (like
decision trees) whose output can change dramatically
when the training data is slightly changed.

Random Forests

• Introduce two sources of randomness: “Bagging”

and “Random input vectors”

 Each tree is grown using a bootstrap sample of

training data

 At each node, best split is chosen from random

sample of m variables instead of all variables M.

• m is held constant during the forest growing

• Each tree is grown to the largest extent possible

• Bagging using decision trees is a special case of random

forests when m=M

Random Forests

Random Forest Algorithm

• Good accuracy without over-fitting

• Fast algorithm (can be faster than growing/pruning a

single tree); easily parallelized

• Handle high dimensional data without much problem

Boosting: AdaBoost

Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line

learning and an application to boosting. Journal of

Computer and System Sciences,

55(1):119–139, August 1997.

 Simple with theoretical foundation

16

Adaboost - Adaptive Boosting

• Use training set re-weighting
 Each training sample uses a weight to determine the

probability of being selected for a training set.

• AdaBoost is an algorithm for constructing a
“strong” classifier as linear combination of
“simple” “weak” classifier

• Final classification based on weighted sum of weak
classifiers

AdaBoost: An Easy Flow

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT
… ...

… ...

… ...

training instances that are wrongly
predicted by Learner1 will be weighted
more for Learner2

weighted
combination

Original training set

Cache-Conscious Runtime Optimization

for Ranking Ensembles

• Challenge in query processing

 Fast ranking score computation

without accuracy loss in multi-

tree ensemble models

• Xun et. al [SIGIR2014]

 Investigate data traversal methods for fast score

calculation with large multi-tree ensemble models

 Propose a 2D blocking scheme for better cache

utilization with simple code structure

Motivation

• Ranking assembles are effective in web search and

other data applications

 E.g. Gradient boosted regression trees (GBRT)

• A large number of trees are used to improve accuracy

 Winning teams at Yahoo! Learning-to-rank challenge

used ensembles with 2k to 20k trees, or even 300k trees

with bagging methods

• Time consuming for computing large ensembles

 Access of irregular document attributes impairs CPU

cache reuse

– Unorchestrated slow memory access incurs significant cost

– Memory access latency is 200x slower than L1 cache

 Dynamic tree branching impairs instruction branch

prediction

Document-ordered Traversal

(DOT)

Scorer-ordered Traversal

(SOT)

Key Idea: Optimize Data Traversal

Two existing solutions:

Our Proposal: 2D Block Traversal

Algorithm Pseudo Code

Why Better?

• Total slow memory accesses in score calculation

 2D block can be up to s time faster. But s is capped

by cache size

DOT SOT 2D Block

• 2D Block fully exploits cache capacity for better temporal

locality

• Block-VPred: a combined solution that applies 2D

Blocking on top of VPred [Asadi et al. TKDE’13]

• 159 lines of code vs VPred 22,651 lines for tree depth 51

Evaluations

• 2D Block and Block-VPred implemented in C

 Compiled with GCC using optimization flag -O3

 Tree ensembles derived by jforests [Ganjisaffar et al.

SIGIR’11] using LambdaMART [Burges et al. JMLR’11]

• Experiment platforms

 3.1GHz 8-core AMD Bulldozer FX8120 processors

 Intel X5650 2.66GHz 6-core dual processors

• Benchmarks

 Yahoo! Learning-to-rank, MSLR-30K, and MQ2007

• Metrics

 Scoring time

 Cache miss ratios and branch misprediction ratios

reported by Linux perf tool

Scoring Time per Document per Tree

 in Nanoseconds

• Query latency = Scoring time * n * m

 n docs ranked with an m-tree model

Query Latency in Seconds

 Block-VPred

 Up to 100% faster than VPred

 Faster than 2D blocking in

some cases

 2D blocking

 Up to 620% faster than DOT

 Up to 213% faster than SOT

 Up to 50% faster than VPred

Fastest algorithm is marked in gray.

Time & Cache Perf. as Ensemble Size Varies

• 2D blocking is up to 287% faster than DOT

• Time & cache perf. are highly correlated

• Change of ensemble size affects DOT the most

Concluding remarks

 2D blocking data traversal method for fast score

calculation with large multi-tree ensemble models

 better cache utilization with simple code structure

• When multi-tree score calculation per query is parallelized

to reduce latency, 2D blocking still maintains its advantage

• For small n, multiple queries could be combined to fully

exploit cache capacity.

 Combining leads to 48.7% time reduction with Yahoo!

150-leaf 8,051-tree ensemble when n=10.

• Future work

 Extend to non-tree ensembles by iteratively selecting a

fixed number of base rank models that fit in fast cache

Time & Cache Perf. as No. of Doc Varies

• 2D blocking is up to 209% faster than SOT

• Block-VPred is up to 297% faster than SOT

• SOT deteriorates the most when number of doc grows

• 2D combines the advantage of both DOT and SOT

2D Blocking:

Time & Cache Perf. as Block Size Vary

• The fastest scoring time and lowest L3 cache miss ratio

are achieved with block size s=1,000 and d=100 when

these trees and documents fit in cache

• Scoring time could be 3.3x slower if block size is not

chosen properly

Impact of Branch Misprediction Ratios

• For larger trees or larger no. of documents

 Branch misprediction impacts more

 Block-VPred outperforms 2D Block with less

misprediction and faster scoring

MQ2007

Dataset
DOT SOT VPred 2D Block

Block-

VPred

50-leaf

tree
1.9% 3.0% 1.1% 2.9% 0.9%

200-leaf

tree
6.5% 4.2% 1.2% 9.0% 1.1%

Yahoo!

Dataset
n=1,000 n=5,000 n=10,000 n=100,000

2D Block 1.9% 2.7% 4.3% 6.1%

Block-VPred 1.1% 0.9% 0.84% 0.44%

