Tree Computation for Ranking and Classification

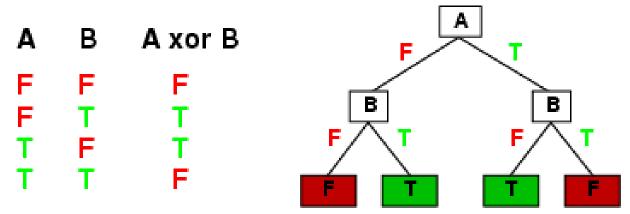
CS240A, T. Yang, 2016

Outlines

- Decision Trees
- Learning Assembles:
 - Random forest, boosted trees

Decision Trees

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:



- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*) but it probably won't generalize to new examples
- Prefer to find more compact decision trees: we don't want to memorize the data, we want to find structure in the data!

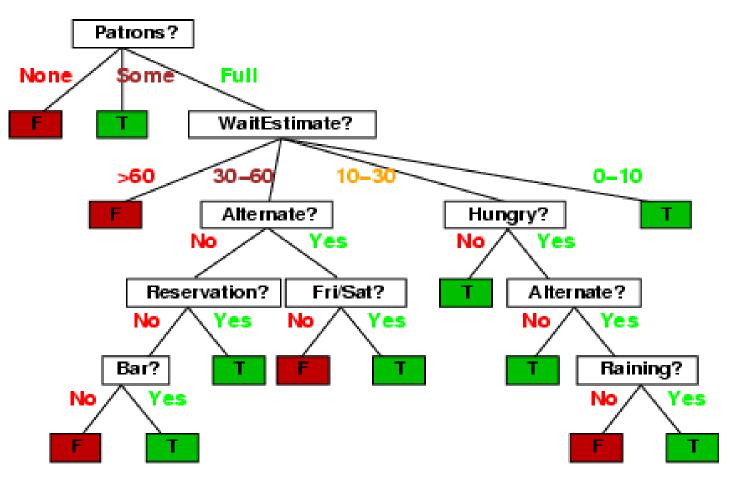
Decision Trees: Application Example

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- **10. WaitEstimate**: estimated waiting time (0-10, 10-30, 30-60, >60)

A decision tree to decide whether to wait

imagine someone talking a sequence of decisions.



Training data: Restaurant example

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example		Attributes						Target			
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

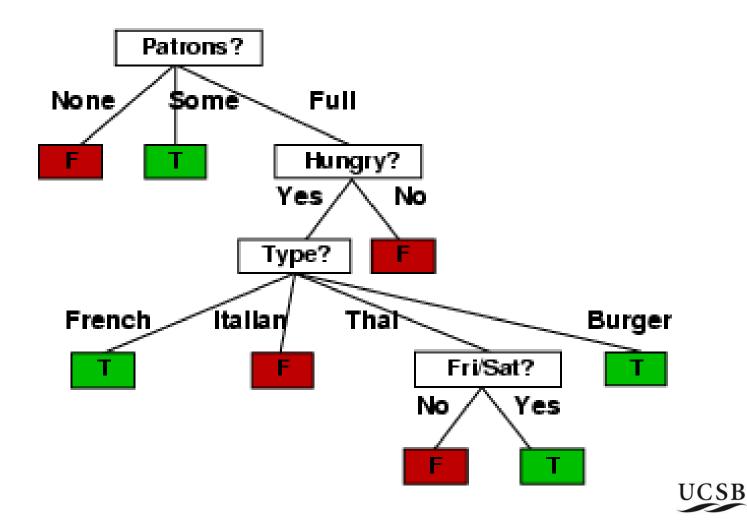
• Classification of examples is positive (T) or negative (F)

Decision tree learning

- If there are so many possible trees, can we actually search this space? (solution: greedy search).
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

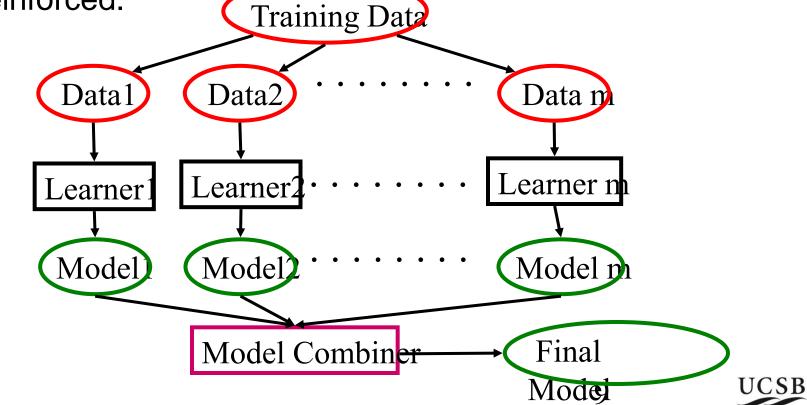
Example: Decision tree learned

• Decision tree learned from the 12 examples:



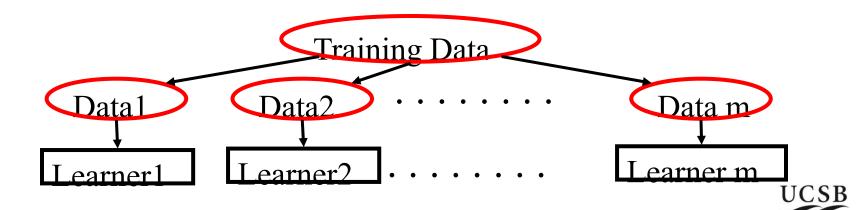
Learning Ensembles

- Learn multiple classifiers separately
- Combine decisions (e.g. using weighted voting)
- When combing multiple decisions, random errors cancel each other out, correct decisions are reinforced.



Homogenous Ensembles

- Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models.
 - Data1 ≠ Data2 ≠ ... ≠ Data m
 - Learner1 = Learner2 = ... = Learner m
- Methods for changing training data:
 - Bagging: Resample training data
 - Boosting: Reweight training data
 - DECORATE: Add additional artificial training data



- Create ensembles by repeatedly randomly resampling the training data (Brieman, 1996).
- Given a training set of size *n*, create *m* sample sets
 - Each *bootstrap sample set* will on average contain 63.2% of the unique training examples, the rest are replicates.
- Combine the *m* resulting models using majority vote.
- Decreases error by decreasing the variance in the results due to *unstable learners*, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.

11

Random Forests

- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Each tree is grown using a bootstrap sample of training data
 - At each node, best split is chosen from random sample of *m* variables instead of all variables M.
- m is held constant during the forest growing
- Each tree is grown to the largest extent possible
- Bagging using decision trees is a special case of random forests when m=M

Random Forests

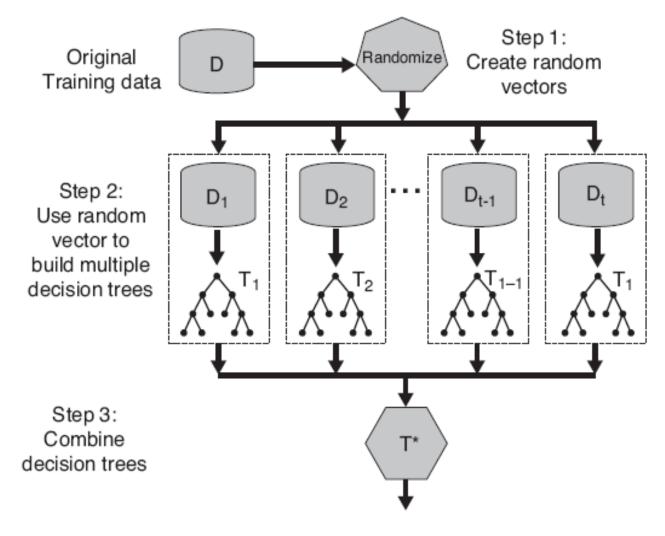


Figure 5.40. Random forests.

Random Forest Algorithm

- Good accuracy without over-fitting
- Fast algorithm (can be faster than growing/pruning a single tree); easily parallelized
- Handle high dimensional data without much problem

Boosting: AdaBoost

Yoav Freund and Robert E. Schapire. A decisiontheoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

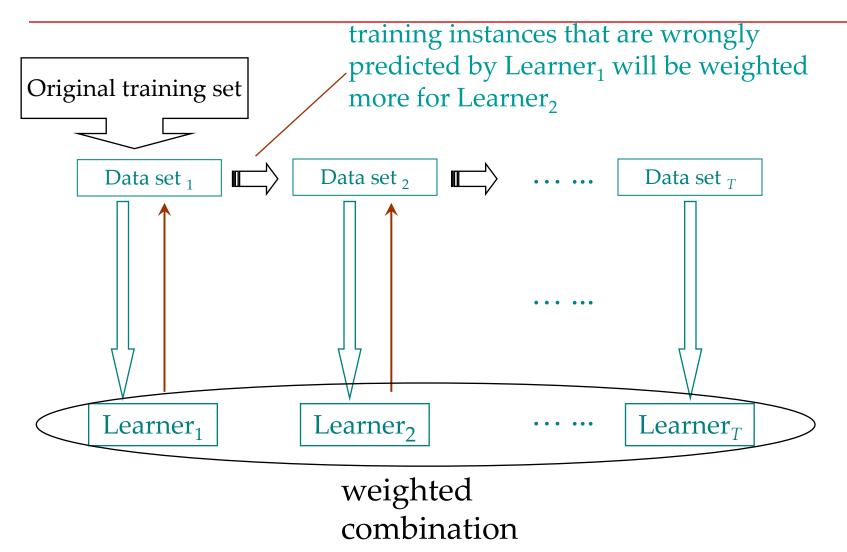
55(1):119–139, August 1997.

Simple with theoretical foundation

Adaboost - Adaptive Boosting

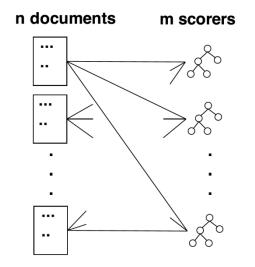
- Use training set re-weighting
 - Each training sample uses a weight to determine the probability of being selected for a training set.
- AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of "simple" "weak" classifier T $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$
- Final classification based on weighted sum of weak classifiers

AdaBoost: An Easy Flow



Cache-Conscious Runtime Optimization for Ranking Ensembles

- Challenge in query processing
 - Fast ranking score computation without accuracy loss in multitree ensemble models



• Xun et. al [SIGIR2014]

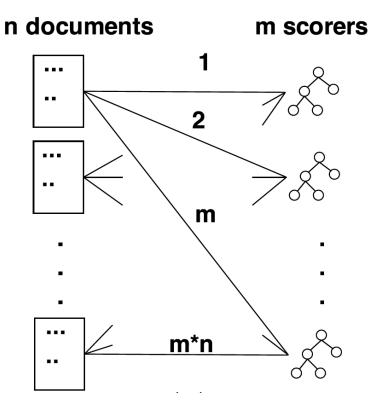
- Investigate data traversal methods for fast score calculation with large multi-tree ensemble models
- Propose a 2D blocking scheme for better cache utilization with simple code structure

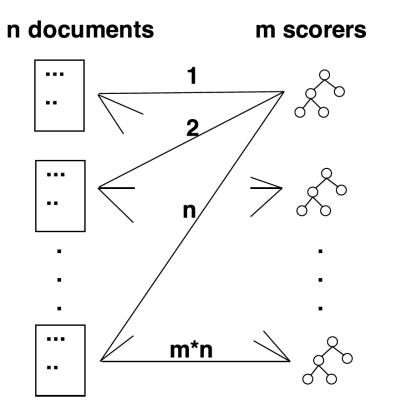
Motivation

- Ranking assembles are effective in web search and other data applications
 - E.g. Gradient boosted regression trees (GBRT)
- A large number of trees are used to improve accuracy
 - Winning teams at Yahoo! Learning-to-rank challenge used ensembles with 2k to 20k trees, or even 300k trees with bagging methods
- Time consuming for computing large ensembles
 - Access of irregular document attributes impairs CPU cache reuse
 - Unorchestrated slow memory access incurs significant cost
 - Memory access latency is 200x slower than L1 cache
 - Dynamic tree branching impairs instruction branch prediction

Key Idea: Optimize Data Traversal

Two existing solutions:

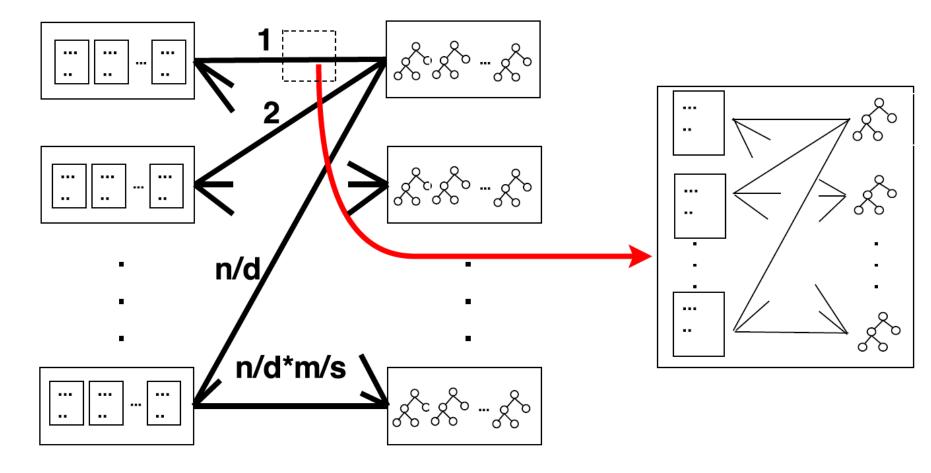




Document-ordered Traversal (DOT) Scorer-ordered Traversal (SOT)

Our Proposal: 2D Block Traversal

n/d document blocks m/s scorer blocks



Algorithm Pseudo Code

Algorithm 2: 2D blocking with SDSD structure.

for
$$j = 0$$
 to $\frac{m}{s} - 1$ do
for $i = 0$ to $\frac{n}{d} - 1$ do
for $jj = 1$ to s do
for $ii = 1$ to d do
Compute subscore for document $i \times d + ii$
with tree $j \times s + jj$.
Update the score of this document.

Why Better?

Total slow memory accesses in score calculation

DOT	SOT	2D Block		
$O(m \times n + m)$	$O(m \times n + n)$	$O(m + \frac{m \times n}{s})$		

- 2D block can be up to s time faster. But s is capped by cache size
- **2D Block** fully exploits cache capacity for better temporal locality
- **Block-VPred**: a combined solution that applies 2D Blocking on top of VPred [Asadi et al. TKDE'13]
 - 159 lines of code vs VPred 22,651 lines for tree depth 51

Evaluations

- 2D Block and Block-VPred implemented in C
 - Compiled with GCC using optimization flag -O3
 - Tree ensembles derived by *jforests* [Ganjisaffar et al. SIGIR'11] using LambdaMART [Burges et al. JMLR'11]
- Experiment platforms
 - 3.1GHz 8-core AMD Bulldozer FX8120 processors
 - Intel X5650 2.66GHz 6-core dual processors
- Benchmarks
 - Yahoo! Learning-to-rank, MSLR-30K, and MQ2007
- Metrics
 - Scoring time
 - Cache miss ratios and branch misprediction ratios reported by Linux *perf* tool

Scoring Time per Document per Tree in Nanoseconds

Dataset	Leaves	m	n	DOT	SOT	VPred $[v]$
	50	$7,\!870$	$5,\!000$	186.0	113.8	47.4 [8]
Yahoo!	150	$8,\!051$	2,000	377.8	150.2	123.0[8]
	400	$2,\!898$	$5,\!000$	312.3	223.8	136.2 [8]
MSLR-30K	50	$1,\!647$	5,000	88.3	41.4	32.6 [8]
MQ2007	50	$9,\!870$	10,000	1.79	1.66	2.02 [8]
WI&2001	200	$10,\!103$	10,000	204.1	30.3	43.1 [32]

- Query latency = Scoring time * n * m
 - n docs ranked with an *m*-tree model

Query Latency in Seconds

2D blocking $[s, d]$	Block-VPred $[s, d, v]$	Latency
$36.4 \ [300, \ 300]$	$36.7 \ [300, \ 320, \ 8]$	1.43
$81.9 \ [100, \ 400]$	$76.1 \ [100, \ 480, \ 8]$	1.23
$90.9 \ [100, \ 400]$	86.0 [100, 400, 8]	1.25
$26.6\ [500,\ 1,000]$	31.1 [500, 1,600, 8]	0.22
$1.51 \ [300, \ 5,000]$	1.94 [300, 5,000, 8]	0.15
$28.3 \ [100, \ 10,\!000]$	$26.2 \ [100, \ 5,000, \ 32]$	2.65

Fastest algorithm is marked in gray.

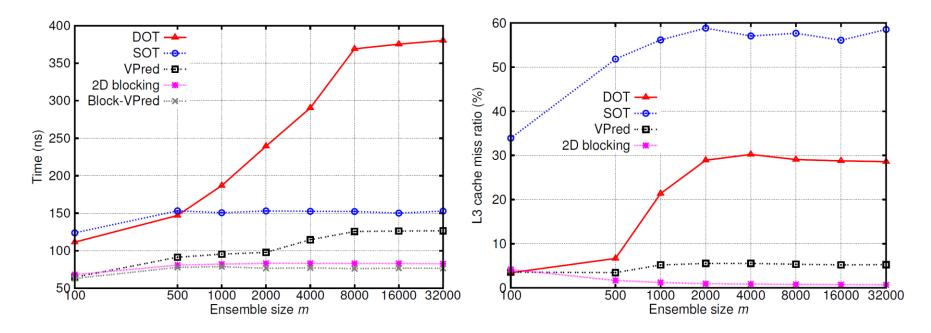
2D blocking

- Up to 620% faster than DOT
- Up to 213% faster than SOT
- Up to 50% faster than VPred

Block-VPred

- Up to 100% faster than VPred
- Faster than 2D blocking in some cases

Time & Cache Perf. as Ensemble Size Varies

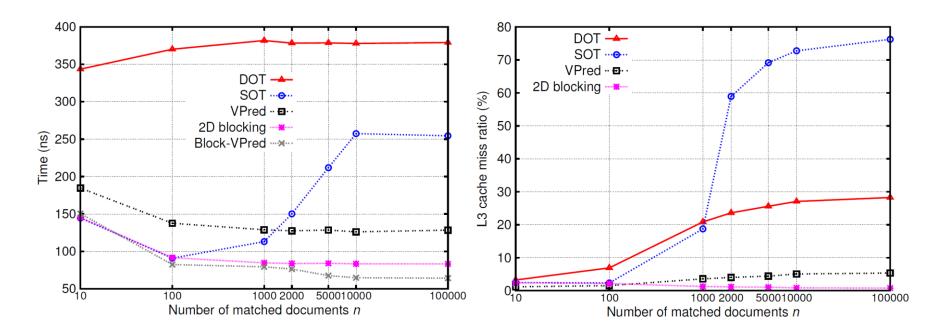


- 2D blocking is up to 287% faster than DOT
- Time & cache perf. are highly correlated
- Change of ensemble size affects DOT the most

Concluding remarks

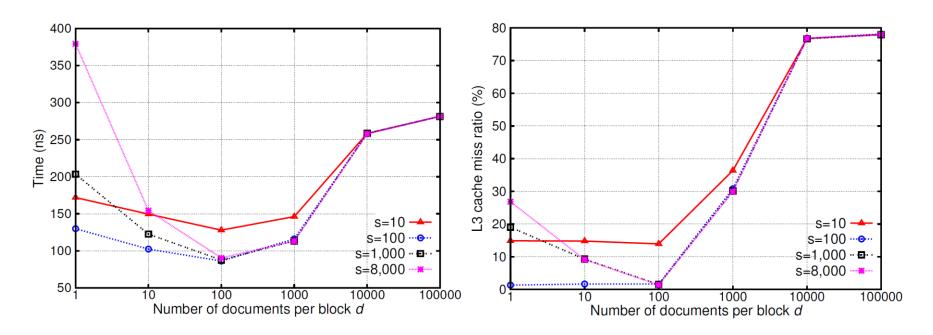
- 2D blocking data traversal method for fast score calculation with large multi-tree ensemble models
 - better cache utilization with simple code structure
- When multi-tree score calculation per query is parallelized to reduce latency, 2D blocking still maintains its advantage
- For small *n*, multiple queries could be combined to fully exploit cache capacity.
 - Combining leads to 48.7% time reduction with Yahoo!
 150-leaf 8,051-tree ensemble when n=10.
- Future work
 - Extend to non-tree ensembles by iteratively selecting a fixed number of base rank models that fit in fast cache

Time & Cache Perf. as No. of Doc Varies



- 2D blocking is up to 209% faster than SOT
- Block-VPred is up to 297% faster than SOT
- SOT deteriorates the most when number of doc grows
- 2D combines the advantage of both DOT and SOT

2D Blocking: Time & Cache Perf. as Block Size Vary



- The fastest scoring time and lowest L3 cache miss ratio are achieved with block size s=1,000 and d=100 when these trees and documents fit in cache
- Scoring time could be 3.3x slower if block size is not chosen properly

Impact of Branch Misprediction Ratios

MQ2007 Dataset	DOT	SOT	VPred	2D Block	Block- VPred
50-leaf tree	1.9%	3.0%	1.1%	2.9%	0.9%
200-leaf tree	6.5%	4.2%	1.2%	9.0%	1.1%

Yahoo! Dataset	<i>n</i> =1,000	<i>n</i> =5,000	<i>n</i> =10,000	<i>n</i> =100,000
2D Block	1.9%	2.7%	4.3%	6.1%
Block-VPred	1.1%	0.9%	0.84%	0.44%

- For larger trees or larger no. of documents
 - Branch misprediction impacts more
 - Block-VPred outperforms 2D Block with less misprediction and faster scoring

