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Outlines 

• Decision Trees 

• Learning Assembles:  

 Random forest, boosted trees 



Decision Trees  

• Decision trees can express any function of the input attributes. 

• E.g., for Boolean functions, truth table row → path to leaf: 

 

 

 

 

 

 

 

 

• Trivially, there is a consistent decision tree for any training set with 
one path to leaf for each example (unless f nondeterministic in x) 
but it probably won't generalize to new examples 

 

• Prefer to find more compact decision trees: we don’t want to 
memorize the data, we want to find structure in the data! 



Decision Trees: Application Example 

Problem: decide whether to wait for a table at a 
restaurant, based on the following attributes: 

 
1. Alternate: is there an alternative restaurant nearby? 

2. Bar: is there a comfortable bar area to wait in? 

3. Fri/Sat: is today Friday or Saturday? 

4. Hungry: are we hungry? 

5. Patrons: number of people in the restaurant (None, Some, 
Full) 

6. Price: price range ($, $$, $$$) 

7. Raining: is it raining outside? 

8. Reservation: have we made a reservation? 

9. Type: kind of restaurant (French, Italian, Thai, Burger) 

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, 
>60) 



A decision tree to decide whether to wait 

• imagine someone talking a sequence of decisions. 



Training data: Restaurant example 

• Examples described by attribute values (Boolean, discrete, 

continuous) 

• E.g., situations where I will/won't wait for a table: 

 

 

 

 

 

 

 

 

 

 

 

• Classification of examples is positive (T) or negative (F) 



Decision tree learning 

• If there are so many possible trees, can we actually 

search this space? (solution: greedy search). 

• Aim: find a small tree consistent with the training 

examples 

• Idea: (recursively) choose "most significant" 

attribute as root of (sub)tree. 

 

 



Example: Decision tree learned 

• Decision tree learned from the 12 examples: 
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Learning Ensembles 

• Learn multiple classifiers separately 

• Combine decisions (e.g. using weighted voting) 

• When combing multiple decisions, random errors 
cancel each other out, correct decisions are 
reinforced. 

 
Training Data 

Data1 Data m Data2          

Learner1 Learner2 Learner m          

Model1 Model2 Model m          

Model Combiner  Final 

Model 



Homogenous Ensembles 

• Use a single, arbitrary learning algorithm 
but manipulate training data to make it 
learn multiple models. 
 Data1  Data2  …  Data m 

 Learner1 = Learner2 = … = Learner m 

• Methods for changing training data: 
 Bagging: Resample training data 

 Boosting: Reweight training data 

 DECORATE: Add additional artificial training data 

Training Data 

Data1 Data m Data2          

Learner1 Learner2 Learner m          
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Bagging 

• Create ensembles by repeatedly randomly resampling 
the training data (Brieman, 1996). 

• Given a training set of size n, create m sample sets 
 Each bootstrap sample set will on average contain 63.2% of 

the unique training examples, the rest are replicates. 

• Combine the m resulting models using majority vote.  

 

• Decreases error by decreasing the variance in the 
results due to unstable learners, algorithms (like 
decision trees) whose output can change dramatically 
when the training data is slightly changed. 



Random Forests 

• Introduce two sources of randomness: “Bagging” 

and “Random input vectors” 

 Each tree is grown using a bootstrap sample of 

training data 

 At each node, best split is chosen from random 

sample of m variables instead of all variables  M. 

• m is held constant during the forest growing 

• Each tree is grown to the largest extent possible 

• Bagging using decision trees is a special case of random 

forests when m=M  

 

 



Random Forests 



Random Forest Algorithm 

• Good accuracy without over-fitting 

• Fast algorithm (can be faster than growing/pruning a 

single tree); easily parallelized 

• Handle high dimensional data without much problem 



Boosting:   AdaBoost 

Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line 

learning and an application to boosting. Journal of 

Computer and System Sciences, 

55(1):119–139, August 1997. 

 Simple with theoretical foundation 
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Adaboost - Adaptive Boosting 

• Use training set re-weighting 
 Each training sample uses a weight to determine the 

probability of being selected for a training set. 

 

• AdaBoost is an algorithm for constructing a 
“strong” classifier as linear combination of 
“simple” “weak” classifier  

 

 

• Final classification based on weighted sum of weak 
classifiers 
 



AdaBoost: An Easy Flow 

Data set 1 Data set 2 Data set T 

Learner1 Learner2 LearnerT 
… ... 

… ... 

… ... 

training instances that are wrongly 
predicted by Learner1 will be weighted 
more for Learner2 

weighted 
combination 

Original training set 



Cache-Conscious Runtime Optimization  

for Ranking Ensembles 

• Challenge in query processing 

 Fast  ranking score computation 

without accuracy loss in multi-

tree ensemble models 

 

• Xun et. al [SIGIR2014] 

 Investigate data traversal methods for fast score 

calculation with large multi-tree ensemble models 

 Propose a 2D blocking scheme for better cache 

utilization with simple code structure 

 



Motivation 

• Ranking assembles are effective in web search and 

other data applications 

 E.g. Gradient boosted regression trees (GBRT) 

• A large number of trees are used to improve accuracy 

 Winning teams at Yahoo! Learning-to-rank challenge 

used ensembles with 2k to 20k trees, or even 300k trees 

with bagging methods  

• Time consuming for computing large ensembles 

 Access of irregular document attributes impairs CPU 

cache reuse 

– Unorchestrated slow memory access incurs significant cost 

– Memory access latency is 200x slower than L1 cache 

 Dynamic tree branching impairs instruction branch 

prediction 

 



Document-ordered Traversal 

(DOT) 

Scorer-ordered Traversal 

(SOT) 

Key Idea:  Optimize Data Traversal  

Two existing solutions: 



Our Proposal: 2D Block Traversal 



Algorithm Pseudo Code 



Why Better?  

• Total slow memory accesses in score calculation 

 

 
 

 2D block can be up to s time faster. But s is capped 

by cache size 

 

 

 

DOT SOT 2D Block 

 

 

• 2D Block fully exploits cache capacity for better temporal 

locality 

• Block-VPred: a combined solution that applies 2D 

Blocking on top of VPred [Asadi et al. TKDE’13] 

• 159 lines of code vs VPred 22,651 lines for tree depth 51 

 

 



Evaluations 

• 2D Block and Block-VPred implemented in C 

 Compiled with GCC using optimization flag -O3 

 Tree ensembles derived by jforests [Ganjisaffar et al. 

SIGIR’11] using LambdaMART [ Burges et al. JMLR’11] 

• Experiment platforms 

 3.1GHz 8-core AMD Bulldozer FX8120 processors 

 Intel X5650 2.66GHz 6-core dual processors 

• Benchmarks 

 Yahoo! Learning-to-rank, MSLR-30K, and MQ2007 

• Metrics 

 Scoring time 

 Cache miss ratios and branch misprediction ratios 

reported by Linux perf tool 



Scoring Time per Document per Tree 

 in Nanoseconds 

• Query latency = Scoring time * n * m  

 n docs ranked with an m-tree model  

 



Query Latency in Seconds 

  Block-VPred  

 Up to 100% faster than VPred 

 Faster than 2D blocking in 

some cases 

 

  2D blocking  

 Up to 620% faster than DOT 

 Up to 213% faster than SOT 

 Up to 50% faster than VPred 

 

Fastest algorithm is marked in gray.  



Time & Cache Perf. as Ensemble Size Varies 

• 2D blocking is up to 287% faster than DOT 

• Time & cache perf. are highly correlated 

• Change of ensemble size affects DOT the most 



Concluding remarks 

 2D blocking data traversal method for fast score 

calculation with large multi-tree ensemble models 

 better cache utilization with simple code structure 

• When multi-tree score calculation per query is parallelized 

to reduce latency, 2D blocking still maintains its advantage 

• For small n, multiple queries could be combined to fully 

exploit cache capacity.  

 Combining leads to 48.7% time reduction with Yahoo! 

150-leaf 8,051-tree ensemble when  n=10. 

• Future work  

 Extend to non-tree ensembles by iteratively selecting a 

fixed number of base rank models that fit in fast cache 

 

 



Time & Cache Perf. as No. of Doc Varies 

• 2D blocking is up to 209% faster than SOT 

• Block-VPred is up to 297% faster than SOT 

• SOT deteriorates the most when number of doc grows 

• 2D combines the advantage of both DOT and SOT 



2D Blocking:  

Time & Cache Perf. as Block Size Vary 

• The fastest scoring time and lowest L3 cache miss ratio 

are achieved with block size s=1,000 and d=100 when 

these trees and documents fit in cache 

• Scoring time could be 3.3x slower if block size is not 

chosen properly 



Impact of Branch Misprediction Ratios 

• For larger trees or larger no. of documents 

 Branch misprediction impacts more   

 Block-VPred outperforms 2D Block with less 

misprediction and faster scoring 

MQ2007 

Dataset 
DOT SOT VPred 2D Block 

Block-

VPred 

50-leaf 

tree 
1.9% 3.0% 1.1% 2.9% 0.9% 

200-leaf 

tree 
6.5% 4.2% 1.2% 9.0% 1.1% 

Yahoo! 

Dataset 
n=1,000 n=5,000 n=10,000 n=100,000 

2D Block 1.9% 2.7% 4.3% 6.1% 

Block-VPred 1.1% 0.9% 0.84% 0.44% 


