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Motivation 
• Most applications in a single processor runs at only 10-

20% of the processor peak 
• Most of the single processor performance loss is in the 

memory system 
– Moving data takes much longer than arithmetic and logic 

• Parallel computing with low single machine 

performance is not good enough. 

• Understand high performance computing and 

cost in a single machine setting 

• Review of cache/memory hierarchy 
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• Principle of locality + memory hierarchy presents programmer with 
≈ as much memory as is available in the cheapest technology at the 
≈ speed offered by the fastest technology 
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Idealized Uniprocessor Model 
• Processor names bytes, words, etc. in its address space 

– These represent integers, floats, pointers, arrays, etc. 
• Operations include 

– Read and write into very fast memory called registers 
– Arithmetic and other logical operations on registers 

• Order specified by program 

– Read returns the most recently written data 
– Compiler and architecture translate high level expressions into 

“obvious” lower level instructions 
 
 
 

– Hardware executes instructions in order specified by compiler 
• Idealized Cost 

– Each operation has roughly the same cost 
 (read, write, add, multiply, etc.) 

A = B + C  

Read address(B) to R1 
Read address(C) to R2 
R3 = R1 + R2 
Write R3 to Address(A) 
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Uniprocessors in the Real World 
• Real processors have 

– registers and caches 
• small amounts of fast memory 
• store values of recently used or nearby data 
• different memory ops can have very different costs 

– parallelism 
• multiple “functional units” that can run in parallel 
• different orders, instruction mixes have different costs 

– pipelining 
• a form of parallelism, like an assembly line in a factory 

• Why is this your problem? 
• In theory, compilers and hardware “understand” all this and 

can optimize your program; in practice they don’t. 
• They won’t know about a different algorithm that might be 

a much better “match” to the processor 
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Memory Hierarchy 
• Most programs have a high degree of locality in their accesses 

– spatial locality: accessing things nearby previous accesses 

– temporal locality: reusing an item that was previously accessed 

• Memory hierarchy tries to exploit locality to improve average 

on-chip 

cache 
registers 

datapath 

control 

processor 

Second 
level 
cache 

(SRAM) 

Main 
memory 

(DRAM) 

Secondary 
storage 
(Disk) 

Tertiary 
storage 

(Disk/Tape) 

Speed 1ns 10ns 100ns 10ms 10sec 

Size KB MB GB TB PB 



Processor 

Control 

Datapath 

Review: Cache in Modern Computer 
Architecture 

7 

PC 

 
 Registers 

Arithmetic & Logic Unit 
(ALU) 

Memory 
Input 

Output 

Bytes 
Address 

Write 
Data 

Read
Data 

Processor-Memory Interface I/O-Memory Interfaces 

Program 

Data 

Cache 



8 

Cache Basics 
• Cache is fast (expensive) memory which keeps 

copy of data in main memory; it is hidden from 
software 
– Simplest example: data at memory address xxxxx1101 is stored 

at cache location 1101 

• Memory data is divided into  blocks 
– Cache access memory by a block (cache line) 
– Cache line length: # of bytes loaded together in one 

entry 
• Cache is divided by the number of sets 

– A cache block can be hosted in one set. 
• Cache hit: in-cache memory access—cheap 
• Cache miss: Need to access next, slower level of 

cache 
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Memory Block-addressing example 



Processor Address Fields used by 
Cache Controller 

• Block Offset: Byte address within block 

– B is number of bytes per block 

• Set Index: Selects which set.  S is the number of sets 

• Tag: Remaining portion of processor address 

 

 

 

• Size of Tag = Address size – log(S) – log(B) 

 

 

Block offset Set Index Tag 
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Processor Address  

Cache Size C = Associativity N ×  # of Set S  ×  Cache Block Size B 

Example:  Cache size 16K.  8 bytes as a block.  2K blocks   If N=1,  S=2K using 11 bits. 



Block number aliasing example 
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Block # Block # mod 8 Block # mod 2 

12-bit memory addresses, 16 Byte blocks 

3-bit set index 1-bit set index 



• 4byte blocks, cache size = 1K words (or 4KB) 
 

Direct-Mapped Cache: N=1. S=Number of Blocks=210 
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Cache Organizations 
• “Fully Associative”: Block can go anywhere 

– N= number of blocks. S=1 

• “Direct Mapped”: Block goes one place  

– N=1. S= cache capacity in terms of  number of blocks 

• “N-way Set Associative”: N places for a block 
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Block ID Block ID 



Four-Way Set-Associative Cache 
• 28 = 256 sets each with four ways (each with one block) 
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How to find if a data address in cache?  
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• Assume block size 8 bytes last 3 bits of 
address are offset. 

• Set index 2 bits.  
• 0b1001011  Block number 0b1001. 
• Set index 2 bits (mod 4) 

• Set number  0b01. 
• Tag = 0b10. 

• If directory based cache, only one block in 
set #1. 

• If 4 ways,  there could be 4 blocks in set #1. 
• Use tag 0b10 to compare what is in the set. 



Cache Replacement Policies 
• Random Replacement 

– Hardware randomly selects a cache evict 

• Least-Recently Used 
– Hardware keeps track of access history 
– Replace the entry that has not been used for the longest time 
– For 2-way set-associative cache, need one bit for LRU replacement 

• Example of a Simple “Pseudo” LRU Implementation 
– Assume 64 Fully Associative entries 
– Hardware replacement pointer points to one cache entry 
– Whenever access is made to the entry the pointer points to: 

• Move the pointer to the next entry 

– Otherwise: do not move the pointer 
– (example of “not-most-recently used” replacement policy) 

: 
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Handling Stores with Write-Through 

• Store instructions write to memory, changing 
values 

• Need to make sure cache and memory have same 
values on writes: 2 policies 

1) Write-Through Policy: write cache and write 
through the cache to memory 
– Every write eventually gets to memory 

– Too slow, so include Write Buffer to allow processor to 
continue once data in Buffer 

– Buffer updates memory in parallel to processor 
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Write-Through 
Cache 

• Write both values in 
cache and in memory 

• Write buffer stops CPU 
from stalling if memory 
cannot keep up 

• Write buffer may have 
multiple entries to 
absorb bursts of writes 

• What if store misses in 
cache? 
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Handling Stores with Write-Back 

2) Write-Back Policy: write only to cache and 
then write cache block back to memory when 
evict block from cache 

– Writes collected in cache, only single write to 
memory per block 

– Include bit to see if wrote to block or not, and 
then only write back if bit is set 

• Called “Dirty” bit (writing makes it “dirty”) 
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Write-Back 
Cache 

• Store/cache hit, write data in 
cache only & set dirty bit 
– Memory has stale value 

• Store/cache miss, read data 
from memory, then update 
and set dirty bit 
– “Write-allocate” policy 

• Load/cache hit, use value 
from cache 

• On any miss, write back 
evicted block, only if dirty. 
Update cache with new block 
and clear dirty bit. 
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Write-Through vs. Write-Back 

• Write-Through: 

– Simpler control logic 

– More predictable timing 
simplifies processor control 
logic 

– Easier to make reliable, since 
memory always has copy of 
data (big idea: Redundancy!) 

• Write-Back 

– More complex control logic 

– More variable timing (0,1,2 
memory accesses per 
cache access) 

– Usually reduces write 
traffic 

– Harder to make reliable, 
sometimes cache has only 
copy of data 
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Cache (Performance) Terms 

• Hit rate: fraction of accesses that hit in the cache 

• Miss rate: 1 – Hit rate 

• Miss penalty: time to replace a block from lower 
level in memory hierarchy to cache 

• Hit time: time to access cache memory (including 
tag comparison) 
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Average Memory Access Time (AMAT) 

• Average Memory Access Time (AMAT) is the 
average time to access memory considering 
both hits and misses in the cache 

AMAT =   Time for a hit   
       +  Miss rate × Miss penalty 
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Given a 0.2ns clock, a miss penalty of 50 clock cycles, a 
miss rate of  2%  per instruction and a cache hit time of 1 
clock cycle, what is AMAT? 

AMAT = 1 cycle + 0.02*50 = 2 cycles = 0.4ns. 


