
1

Caches and Memory Hierarchy:

Review

UCSB CS240A, Winter 2016

2

Motivation
• Most applications in a single processor runs at only 10-

20% of the processor peak
• Most of the single processor performance loss is in the

memory system
– Moving data takes much longer than arithmetic and logic

• Parallel computing with low single machine

performance is not good enough.

• Understand high performance computing and

cost in a single machine setting

• Review of cache/memory hierarchy

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

R
egFile

Main
Memory
(DRAM) D

ata
C

ach
e

In
str

C
ach

e

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

3

• Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

 Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

4

Idealized Uniprocessor Model
• Processor names bytes, words, etc. in its address space

– These represent integers, floats, pointers, arrays, etc.
• Operations include

– Read and write into very fast memory called registers
– Arithmetic and other logical operations on registers

• Order specified by program

– Read returns the most recently written data
– Compiler and architecture translate high level expressions into

“obvious” lower level instructions

– Hardware executes instructions in order specified by compiler
• Idealized Cost

– Each operation has roughly the same cost
 (read, write, add, multiply, etc.)

A = B + C 

Read address(B) to R1
Read address(C) to R2
R3 = R1 + R2
Write R3 to Address(A)

5

Uniprocessors in the Real World
• Real processors have

– registers and caches
• small amounts of fast memory
• store values of recently used or nearby data
• different memory ops can have very different costs

– parallelism
• multiple “functional units” that can run in parallel
• different orders, instruction mixes have different costs

– pipelining
• a form of parallelism, like an assembly line in a factory

• Why is this your problem?
• In theory, compilers and hardware “understand” all this and

can optimize your program; in practice they don’t.
• They won’t know about a different algorithm that might be

a much better “match” to the processor

6

Memory Hierarchy
• Most programs have a high degree of locality in their accesses

– spatial locality: accessing things nearby previous accesses

– temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

on-chip

cache
registers

datapath

control

processor

Second
level
cache

(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

Processor

Control

Datapath

Review: Cache in Modern Computer
Architecture

7

PC

 Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes
Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

8

Cache Basics
• Cache is fast (expensive) memory which keeps

copy of data in main memory; it is hidden from
software
– Simplest example: data at memory address xxxxx1101 is stored

at cache location 1101

• Memory data is divided into blocks
– Cache access memory by a block (cache line)
– Cache line length: # of bytes loaded together in one

entry
• Cache is divided by the number of sets

– A cache block can be hosted in one set.
• Cache hit: in-cache memory access—cheap
• Cache miss: Need to access next, slower level of

cache

1/6/2016 9

Memory Block-addressing example

Processor Address Fields used by
Cache Controller

• Block Offset: Byte address within block

– B is number of bytes per block

• Set Index: Selects which set. S is the number of sets

• Tag: Remaining portion of processor address

• Size of Tag = Address size – log(S) – log(B)

Block offset Set Index Tag

10

Processor Address

Cache Size C = Associativity N × # of Set S × Cache Block Size B

Example: Cache size 16K. 8 bytes as a block.  2K blocks  If N=1, S=2K using 11 bits.

Block number aliasing example

1/6/2016 11

Block # Block # mod 8 Block # mod 2

12-bit memory addresses, 16 Byte blocks

3-bit set index 1-bit set index

• 4byte blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache: N=1. S=Number of Blocks=210

20 Tag 10

Index

Data Index Tag Valid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte offset

20

Data

32

Hit

12

Valid bit
ensures

something
useful in
cache for
this index

Compare
Tag with

upper part of
Address to
see if a Hit

Read
data
from
cache

instead
of

memory
if a Hit

Comparator

Cache Size C = Associativity N × # of Set S × Cache Block Size B

Cache Organizations
• “Fully Associative”: Block can go anywhere

– N= number of blocks. S=1

• “Direct Mapped”: Block goes one place

– N=1. S= cache capacity in terms of number of blocks

• “N-way Set Associative”: N places for a block

13

Block ID Block ID

Four-Way Set-Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

Data Tag V
0

1

2

.

.

.

 253

 254

 255

Data Tag V
0

1

2

.

.

.

 253

 254

 255

Data Tag V
0

1

2

.

.

.

 253

 254

 255

 Set Index

Data Tag V
0

1

2

.

.

.

 253

 254

 255

8
Index

22 Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

14

How to find if a data address in cache?

15

• Assume block size 8 bytes last 3 bits of
address are offset.

• Set index 2 bits.
• 0b1001011  Block number 0b1001.
• Set index 2 bits (mod 4)

• Set number  0b01.
• Tag = 0b10.

• If directory based cache, only one block in
set #1.

• If 4 ways, there could be 4 blocks in set #1.
• Use tag 0b10 to compare what is in the set.

Cache Replacement Policies
• Random Replacement

– Hardware randomly selects a cache evict

• Least-Recently Used
– Hardware keeps track of access history
– Replace the entry that has not been used for the longest time
– For 2-way set-associative cache, need one bit for LRU replacement

• Example of a Simple “Pseudo” LRU Implementation
– Assume 64 Fully Associative entries
– Hardware replacement pointer points to one cache entry
– Whenever access is made to the entry the pointer points to:

• Move the pointer to the next entry

– Otherwise: do not move the pointer
– (example of “not-most-recently used” replacement policy)

:

Entry 0

Entry 1

Entry 63

Replacement

Pointer

16

Handling Stores with Write-Through

• Store instructions write to memory, changing
values

• Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
– Every write eventually gets to memory

– Too slow, so include Write Buffer to allow processor to
continue once data in Buffer

– Buffer updates memory in parallel to processor

 17

Write-Through
Cache

• Write both values in
cache and in memory

• Write buffer stops CPU
from stalling if memory
cannot keep up

• Write buffer may have
multiple entries to
absorb bursts of writes

• What if store misses in
cache?

18

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99

252

7

20

12

131

2041
Addr Data

Write
Buffer

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

– Writes collected in cache, only single write to
memory per block

– Include bit to see if wrote to block or not, and
then only write back if bit is set

• Called “Dirty” bit (writing makes it “dirty”)

19

Write-Back
Cache

• Store/cache hit, write data in
cache only & set dirty bit
– Memory has stale value

• Store/cache miss, read data
from memory, then update
and set dirty bit
– “Write-allocate” policy

• Load/cache hit, use value
from cache

• On any miss, write back
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

20

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99

252

7

20

12

131

2041

D

D

D

D

Dirty
Bits

Write-Through vs. Write-Back

• Write-Through:

– Simpler control logic

– More predictable timing
simplifies processor control
logic

– Easier to make reliable, since
memory always has copy of
data (big idea: Redundancy!)

• Write-Back

– More complex control logic

– More variable timing (0,1,2
memory accesses per
cache access)

– Usually reduces write
traffic

– Harder to make reliable,
sometimes cache has only
copy of data

21

Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache

• Miss rate: 1 – Hit rate

• Miss penalty: time to replace a block from lower
level in memory hierarchy to cache

• Hit time: time to access cache memory (including
tag comparison)

22

Average Memory Access Time (AMAT)

• Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
 + Miss rate × Miss penalty

23

Given a 0.2ns clock, a miss penalty of 50 clock cycles, a
miss rate of 2% per instruction and a cache hit time of 1
clock cycle, what is AMAT?

AMAT = 1 cycle + 0.02*50 = 2 cycles = 0.4ns.

