
1

Optimizing Cache Performance

in Matrix Multiplication

UCSB CS240A, Winter 2016

Modified from Demmel/Yelick’s slides

2

Case Study with Matrix Multiplication

• An important kernel in many problems

• Optimization ideas can be used in other problems

• The most-studied algorithm in high performance computing

• How to measure quality of implementation in terms of

performance?

• Megaflops number

• Defined as: Core computation count / time spent

• Matrix-matrix multiplication operation count = 2 n^3

• Example: 300MFLOPS 300 million MM-related floating

operations performed per second.

(Red Hot Blue Cool)

E
m

b
e

d

S
P

E
C

D
B

G
a

m
e

s

M
L

H
P

C

Health Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

What do commercial and CSE applications have in common?

4

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

5

Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory

addresses are “1-D”

• Conventions for matrix layout

• by column, or “column major” (Fortran default); A(i,j) at A+i+j*n

• by row, or “row major” (C default) A(i,j) at A+i*n+j

• recursive later)

• Column major (for now)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

cachelines
Blue row of matrix is

stored in red cachelines

Figure source: Larry Carter, UCSD

Column major matrix in memory

6

Computational

Intensity: Key to

algorithm efficiency

Machine

Balance:

Key to

machine

efficiency

 Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory

• m = number of memory elements (words) moved between fast and

slow memory

• tm = time per slow memory operation

• f = number of arithmetic operations

• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow memory access

• Minimum possible time = f* tf when all data in fast memory

• Actual time

• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

• Larger q means time closer to minimum f * tf

• q tm/tf needed to get at least half of peak speed

7

Warm up: Matrix-vector multiplication

{implements y = y + A*x}

for i = 1 to n

 for j = 1 to n

 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

8

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1 to n

 {read row i of A into fast memory}

 for j = 1 to n

 y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m 2
•Time

f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

 = 2*n2 * tf * (1 + tm/tf * 1/2)

•Megaflop rate =f/ Time = 1 / (tf + 0.5 tm)

• Matrix-vector multiplication limited by slow memory speed

9

 Modeling Matrix-Vector Multiplication

• Compute time for nxn = 1000x1000 matrix

• For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)

• http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

• For tm use minimum-memory-latency / words-per-cache-line

Clock Peak Linesize t_m/t_f

MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8

Ultra 3 900 1800 28 200 32 14.0

Pentium 3 500 500 25 60 32 6.3

Pentium3M 800 800 40 60 32 10.0

Power3 375 1500 35 139 128 8.8

Power4 1300 5200 60 10000 128 15.0

Itanium1 800 3200 36 85 32 36.0

Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max)

cycles machine

balance

(q must

be at least

this for

½ peak

speed)

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

10

Simplifying Assumptions

• What simplifying assumptions did we make in this

analysis?

• Ignored parallelism in processor between memory and

arithmetic within the processor

• Sometimes drop arithmetic term in this type of analysis

• Assumed fast memory was large enough to hold three vectors

• Reasonable if we are talking about any level of cache

• Not if we are talking about registers (~32 words)

• Assumed the cost of a fast memory access is 0

• Reasonable if we are talking about registers

• Not necessarily if we are talking about cache (1-2 cycles for L1)

• Memory latency is constant

• Could simplify even further by ignoring memory

operations in X and Y vectors

• Megaflop rate = 1 / (tf + 0.5 tm)

11

Validating the Model

• How well does the model predict actual performance?

• Actual DGEMV: Most highly optimized code for the platform

• Model sufficient to compare across machines

• But under-predicting on most recent ones due to latency estimate

0

200

400

600

800

1000

1200

1400

Ultra 2i Ultra 3 Pentium 3 Pentium3M Power3 Power4 Itanium1 Itanium2

M
F

lo
p

/s

Predicted MFLOP

(ignoring x,y)

Pre DGEMV Mflops

(with x,y)

Actual DGEMV

(MFLOPS)

12

Naïve Matrix-Matrix Multiplication

{implements C = C + A*B}

for i = 1 to n

 for j = 1 to n

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and

operates on 3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

13

Naïve Matrix Multiply

{implements C = C + A*B}

for i = 1 to n

 {read row i of A into fast memory}

 for j = 1 to n

 {read C(i,j) into fast memory}

 {read column j of B into fast memory}

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

 {write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

14

Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

 m = n3 to read each column of B n times

 + n2 to read each row of A once

 + 2n2 to read and write each element of C once

 = n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)

 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B

Similar for any other order of 3 loops

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

15

Partitioning for blocked matrix multiplication

• Example of submartix partitioning

16

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where

b=n / N is called the block size

 for i = 1 to N

 for j = 1 to N

 for k = 1 to N

 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

17

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where

b=n / N is called the block size

 for i = 1 to N

 for j = 1 to N

 {read block C(i,j) into fast memory}

 for k = 1 to N

 {read block A(i,k) into fast memory}

 {read block B(k,j) into fast memory}

 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

18

Blocked (Tiled) Matrix Multiply

Recall:

 m is amount memory traffic between slow and fast memory

 matrix has nxn elements, and NxN blocks each of size bxb

 f is number of floating point operations, 2n3 for this problem

 q = f / m is our measure of memory access efficiency

So:

 m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)

 + N*n2 read each block of A N3 times

 + 2n2 read and write each block of C once

 = (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)

 n / N = b for large n

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiply (q=2)

19

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q b

• The larger the block size, the more efficient our algorithm will be

• Limit: All three blocks from A,B,C must fit in fast memory (cache), so

we cannot make these blocks arbitrarily large

• Assume your fast memory has size Mfast

 3b2 Mfast, so q b (Mfast/3)1/2

required

t_m/t_f KB

Ultra 2i 24.8 14.8

Ultra 3 14 4.7

Pentium 3 6.25 0.9

Pentium3M 10 2.4

Power3 8.75 1.8

Power4 15 5.4

Itanium1 36 31.1

Itanium2 5.5 0.7

• To build a machine to run matrix

multiply at 1/2 peak arithmetic speed

of the machine, we need a fast

memory of size

 Mfast 3b2 3q2 = 3(tm/tf)
2

• This size is reasonable for L1 cache,

but not for register sets

• Note: analysis assumes it is possible

to schedule the instructions perfectly

20

Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface (evolving)

• www.netlib.org/blas, www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations

• History

• BLAS1 (1970s):

• vector operations: dot product, saxpy (y=a*x+y), etc

• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)

• matrix-vector operations. Example: matrix vector multiply, etc

• m=n^2, f=2*n^2, q~2, less overhead

• somewhat faster than BLAS1

• BLAS3 (late 1980s)

• matrix-matrix operations: Example: matrix matrix multiply, etc

• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

• Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)

• See www.netlib.org/{lapack,scalapack}

• If BLAS3 is not possible, use BLAS2 if applicable.

Otherwise BLAS1.

21

BLAS speeds on an IBM RS6000/590

BLAS 3

BLAS 2

BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs

BLAS 2 (n-by-n matrix vector multiply) vs

BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Peak

22

Dense Linear Algebra: BLAS2 vs. BLAS3

• BLAS2 and BLAS3 have very different computational

intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

0

100

200

300

400

500

600

700

800

900

1000

A
M

D
 A

th
lo
n-

60
0

D
E
C
 e

v5
6-

53
3

D
E
C
 e

v6
-5

00

H
P
90

00
/7

35
/1

35

IB
M

 P
P
C
60

4-
11

2

IB
M

 P
ow

er
2-

16
0

IB
M

 P
ow

er
3-

20
0

P
en

tiu
m

 P
ro

-2
00

P
en

tiu
m

 II
-2

66

P
en

tiu
m

 II
I-5

50

S
G
I R

10
00

0i
p2

8-
20

0

S
G
I R

12
00

0i
p3

0-
27

0

M
F

lo
p

/s

DGEMM

DGEMV

Data source: Jack Dongarra

23

Summary
• Performance programming on uniprocessors requires

• understanding of memory system

• understanding of fine-grained parallelism in processor

• Simple performance models can aid in understanding

• Two ratios are key to efficiency (relative to peak)

1.computational intensity of the algorithm:

• q = f/m = # floating point operations / # slow memory references

2.machine balance in the memory system:

• tm/tf = time for slow memory reference / time for floating point operation

• Want q > tm/tf to get half machine peak

• Blocking (tiling) is a basic approach to increase q

• Techniques apply generally, but the details (e.g., block size) are

architecture dependent

• Similar techniques are possible on other data structures and algorithms

24

Questions You Should Be Able to Answer

1. What is the key to understand algorithm efficiency in

our simple memory model?

2. Why does block matrix multiply reduce the number of

memory references?

2D blocking is sometime called tiling

3. What are the BLAS?

25

Summary

• Details of machine are important for performance

• Processor and memory system (not just parallelism)

• Before you parallelize, make sure you’re getting good serial

performance

• What to expect? Use understanding of hardware limits

• Locality is at least as important as computation

• Temporal: re-use of data recently used

• Spatial: using data nearby that recently used

• Machines have memory hierarchies

• 100s of cycles to read from DRAM (main memory)

• Caches are fast (small) memory that optimize average case

• Can rearrange code/data to improve locality

• Useful techniques: Blocking. Loop exchange.

