
Spark Programming at Comet

UCSB CS240A 2016. Tao Yang

2

Comet Cluster

• Comet cluster has 1944 nodes and each node has
24 cores, built on two 12-core Intel Xeon E5-2680v3
2.5 GHz processors

• 128 GB memory and 320GB SSD for local scratch
space.

• Attached storage: Shared 7 petabytes of 200
GB/second performance storage and 6 petabytes of
100 GB/second durable storage

 Lustre Storage Area is a Parallel File System
(PFS) called Data Oasis.

– Users can access from

 /oasis/scratch/comet/$USER/temp_project

Home

local storage Login

node

/oasis

Hadoop installation at Comet

• Installed in /opt/hadoop/1.2.1

o Configure Hadoop on-demand with myHadoop:

 /opt/hadoop/contrib/myHadoop/bin/myhadoop-

configure.sh

Home

Linux
Hadoop connects local storage Login

node

Hadoop file system is built dynamically on the nodes

allocated. Deleted when the allocation is terminated.

Sample Spark Programs

Sample from Comet team is in

/home/tyang/cs240sample/sparkgraphx.

Spark word count example is available at Comet under
/home/tyang/cs240sample/spark-wc/

• wordcount.py – Python wordcount code using Spark.

• docwordcount.py for counting the number of documents each
word appears.

• Makefile - instructions to submit and run a Spark python job

• Importer.java – Convert the input format from .txt to .seq
sequence format using Hadoop library. It splits the input file into
separate (key, value) pairs. The key is arbitrary (like "doc_xyz")
and the value will be the contents of our input file between two "---
END.OF.DOCUMENT---" markers.

 Use “sbatch submit-hadoop-importer.sh” to submit and run.

How to Run a Spark Job

 Use “compute” partition for allocation

 sbatch submit-spark-wc.sh

– Data input is data/billOfRights1.txt.seq

– Data output is in spark-wc-out

 Job trace sample is sparkwc.1570908.comet-18-

08.out

Home

Comet cluster

Login node

comet.sdsc.xsed

e.org

“compute” queue

Sample script (submit-spark-wc.sh) #!/bin/bash

#SBATCH --job-name="sparkpython-demo"

#SBATCH --output="sparkwc.%j.%N.out"

#SBATCH --partition=compute

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=2

#SBATCH --export=ALL

#SBATCH -t 00:30:00 module load spark

export PATH=/opt/hadoop/2.6.0/sbin:$PATH

export HADOOP_CONF_DIR=$HOME/mycluster.conf

export WORKDIR=`pwd`

#Build a Hadoop file system

myhadoop-configure.sh

#Start all demons of Hadoop/Spark.

start-dfs.sh

source $HADOOP_CONF_DIR/spark/spark-env.sh

myspark start

Home

Linux
Login

node
Hadoop

Sample script

#make an input directory in the hadoop file system

hdfs dfs -mkdir -p /user/$USER

#copy data from local Linux file system to the Hadoop file system

hdfs dfs -put $WORKDIR/data/billOfRights1.txt.seq
/user/$USER/input.seq

#Run Spark Python wordcount job

spark-submit wordcount.py /user/$USER/input.seq output

Create a local directory to host the output data

rm -rf spark-wc-out >/dev/null || true

mkdir -p spark-wc-out

Copy out the output data

hadoop dfs -copyToLocal output/part* spark-wc-out

#Stop all demons and cleanup

myspark stop

stop-dfs.sh

myhadoop-cleanup.sh

Home

Linux Login

node Hadoop

Sample output trace

 wordcount.1569018.comet-17-14.out
comet-18-08.ibnet: starting namenode, logging to /scratch/tyang/1570908/logs/hadoop-tyang-namenode-

comet-18-08.sdsc.edu.out

comet-18-08.ibnet: starting datanode, logging to /scratch/tyang/1570908/logs/hadoop-tyang-datanode-
comet-18-08.sdsc.edu.out

comet-18-09.ibnet: starting datanode, logging to /scratch/tyang/1570908/logs/hadoop-tyang-datanode-
comet-18-09.sdsc.edu.out

comet-18-08.ibnet: starting secondarynamenode, logging to /scratch/tyang/1570908/logs/hadoop-tyang-
secondarynamenode-comet-18-08.sdsc.edu.out

starting org.apache.spark.deploy.master.Master, logging to /scratch/tyang/1570908/logs/spark-tyang-
org.apache.spark.deploy.master.Master-1-comet-18-08.out

starting org.apache.spark.deploy.worker.Worker, logging to /scratch/tyang/1570908/logs/spark-tyang-
org.apache.spark.deploy.worker.Worker-1-comet-18-08.sdsc.edu.out

starting org.apache.spark.deploy.worker.Worker, logging to /scratch/tyang/1570908/logs/spark-tyang-
org.apache.spark.deploy.worker.Worker-1-comet-18-09.sdsc.edu.out

Sample output trace

 wordcount.1569018.comet-17-14.out

16/02/01 11:30:08 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 2437 bytes result sent
to driver

16/02/01 11:30:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 161 ms on
localhost (1/1)

16/02/01 11:30:08 INFO executor.Executor: Finished task 0.0 in stage 1.0 (TID 1). 2317 bytes result sent
to driver

16/02/01 11:30:08 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 163 ms on
localhost (1/1)

16/02/01 11:30:09 INFO executor.Executor: Finished task 0.0 in stage 2.0 (TID 2). 1229 bytes result sent
to driver

16/02/01 11:30:09 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 2.0 (TID 2) in 194 ms on
localhost (1/1)

stopping org.apache.spark.deploy.master.Master

stopping org.apache.spark.deploy.worker.Worker

stopping org.apache.spark.deploy.worker.Worker

comet-18-08.ibnet: stopping namenode

comet-18-09.ibnet: stopping datanode

comet-18-08.ibnet: stopping datanode

comet-18-08.ibnet: stopping secondarynamenode

Home

Linux
Login

node
Hadoop

Sample input and output

$ more data/billOfRights.txt

Amendment I

Congress shall make no law respecting an establishment of religion, or prohibiting the free
exercise thereof; or abridging

the freedom of speech, or of the press; or the right of the people peaceably to assemble, and
to petition the Government for a redress of grievances.

---END.OF.DOCUMENT---

Amendment II

A well regulated Militia, being necessary to the security of a free State, the right of the people
to keep and bear Arms, s

hall not be infringed.

---END.OF.DOCUMENT---

$ more spark-wc-out/part-00000

(u'all', 1)

(u'United', 2)

(u'particularly', 1)

(u'just', 1)

(u'being', 1)

(u'consent', 1)

(u'supported', 1)

(u'Suits', 1)

(u'press', 1)

(u'same', 1)

(u'committed', 1)

Shell Commands for Hadoop File System

• Mkdir, ls, cat, cp

 hadoop dfs -mkdir /user/deepak/dir1

 hadoop dfs -ls /user/deepak

 hadoop dfs -cat /usr/deepak/file.txt

 hadoop dfs -cp /user/deepak/dir1/abc.txt /user/deepak/dir2

• Copy data from the local file system to HDF

 hadoop dfs -copyFromLocal <src:localFileSystem>

<dest:Hdfs>

 Ex: hadoop dfs –copyFromLocal

/home/hduser/def.txt /user/deepak/dir1

• Copy data from HDF to local

 hadoop dfs -copyToLocal <src:Hdfs>

<dest:localFileSystem>
 http://www.bigdataplanet.info/2013/10/All-Hadoop-Shell-Commands-you-need-Hadoop-Tutorial-Part-5.html

Notes

• To check the status of your job

 squeue -u username

• To cancel a submitted job

 scancel job-id

• You have to request *all* 24 cores on the nodes. Hadoop is
java based and any memory limits start causing problems.
Also, in the compute partition you are charged for the whole
node anyway.

Notes

• Your script should delete the outout directory if you want to
rerun and copy out data to that directory. Otherwise the
Hadoop copy back fails because the file already exists.

 The current script forces to remove “spark-wc-out".

• If you are running several jobs simultaneously, please make
sure you choose different locations for for the configuration
files. Basically change the line:

 export HADOOP_CONF_DIR=/home/$USER/cometcluster

to point to different directories for each run. Otherwise the
configuration from different jobs will overwrite in the same
directory and cause problems.

