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CS240A: Applied Parallel 
Computing  

 
 
 

Introduction 
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CS 240A Course Information 

• Web page:  

  http://www.cs.ucsb.edu/~tyang/class/240a16w 

• Class schedule: Tu/Th. 11:00AM-12:50pm Phelp 2510 

• Instructor:  Tao Yang (tyang at cs).  

- Office Hours: Tu/Th 10-11(or email me for appointments or just stop by my 
office). HFH building, Room 5113 

 

http://www.cs.ucsb.edu/~tyang
http://www.cs.ucsb.edu/~tyang
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Topics 

• High performance computing 

- Basics of computer architecture, clusters/cloud systems. 

- Memory hierarchies, 

- High throughput computing 

• Parallel Programming Models and Machines. 
Software/libraries 

- Shared memory vs distributed memory 

- Threads, OpenMP, MPI, MapReduce, Spark. 

- SIMD 

• Patterns of parallelism. Optimization  techniques for  
parallelization and performance 

• Parallelism in Scientific Computing and Applications 

- Core algorithms (Dense  & Sparse Linear Algebra) 

• Parallelism in data-intensive applications and systems 
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What you should get out of the course 

In depth understanding of: 

• How to maximize the use of CPU/cache for high 
performance computing 

• When is parallel computing useful? 

• Understanding of parallel computing hardware options. 

• Overview of programming models (software) and tools. 

• Some parallel applications and the algorithms 

• Performance analysis and tuning 

• Exposure to various open research questions 
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Introduction: Outline 

 

• Why powerful computers must be parallel computing 

 

• Why parallel processing? 

- Large Computational Science and Engineering (CSE)  problems 
require powerful computers 

- Commercial data-oriented computing also needs. 

• Basic parallel performance models 

• Why writing (fast) parallel programs is hard 

 

Including your laptops and handhelds 

all 
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Metrics in Scientific Computing Worlds 

• High Performance Computing (HPC) units are: 

- Flop: floating point operation, usually double precision unless noted 

- Flop/s: floating point operations per second 

- Bytes: size of data (a double precision floating point number is 8) 

• Typical sizes are millions, billions, trillions… 

Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes 

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes 

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes  

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes 

Exa  Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes 

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes 

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes  

 

• Current fastest (public) machine ~ 27 Pflop/s 

- Up-to-date list at www.top500.org  
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Gordon Moore 

Intel Cofounder 

B.S. Cal 1950! 
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every 2 years 
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Revolution in Processors 

• Chip density is continuing increase ~2x every 2 years 
• Clock speed is not 
• Number of processor cores may double instead 
• Power is under control, no longer growing 
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 Impact of Parallelism 

• All major processor vendors are producing multicore chips 

- Every machine will soon be a parallel machine 

- To keep doubling performance, parallelism must double 

• Which commercial applications can use this parallelism? 

- Do they have to be rewritten from scratch? 

• Will all programmers have to be parallel programmers? 

- New software model needed 

- Try to hide complexity from most programmers – eventually 

• Computer industry betting on this big change, but does not 
have all the answers 
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Memory is Not Keeping Pace 

µProc 

60%/yr. 

DRAM 

7%/yr. 
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“Moore’s Law” 

Memory density is doubling every three years; processor logic is every two 

Question: Can you double concurrency without doubling memory? 
• Strong scaling: fixed problem size, increase number of processors 
• Weak scaling: grow problem size proportionally to number of 

processors 



• Listing the 500 most powerful computers 
in the world  

• Linpack performance 

- Solve Ax=b, dense problem, matrix is random 

- Dominated by dense matrix-matrix multiply   

• Update twice a year: 

- ISC’xy in June in Germany 

- SCxy in November in the U.S. 

• All information available from the TOP500 
web site at: www.top500.org  

 

The TOP500 Project 



Rank Site System Cores 

Rmax 

(TFlop/s) 

Rpeak 

(TFlop/s) 

Power 

(kW) 

1 National 

Super 

Computer 

Center in 

Guangzho

u 

China 

Tianhe-2 

(MilkyWay-2) - 

TH-IVB-FEP 

Cluster, Intel Xeon 

E5-2692 12C 

2.200GHz, TH 

Express-2, Intel 

Xeon Phi 31S1P 

NUDT 

3,120,0

00 

33,862.7 54,902.4 17,808 

2 DOE/SC/O

ak Ridge 

National 

Laboratory 

United 

States 

Titan - Cray XK7 , 

Opteron 6274 16C 

2.200GHz, Cray 

Gemini 

interconnect, 

NVIDIA K20x 

Cray Inc. 

560,640 17,590.0 27,112.5 8,209 

From  www.top500.org, Nov 2015 

http://top500.org/site/50365
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http://www.top500.org/


Moore’s Law reinterpreted 

• Number of cores per chip will double every 
two years 

• Clock speed will not increase (possibly 
decrease) 

• Need to deal with systems with millions of 
concurrent threads 

• Need to deal with inter-chip parallelism as 
well as intra-chip parallelism 
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Outline 

 

• Why powerful computers must be parallel processors  

 

• Large Computational Science&Engineering and 
commercial  problems require powerful computers 

 

• Basic performance models 

• Why writing (fast) parallel programs is hard 

 

Including your laptops and handhelds 

all 
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Some Particularly Challenging Computations 

• Science 
- Global climate modeling 

- Biology: genomics; protein folding; drug design 

- Astrophysical modeling 

- Computational Chemistry 

- Computational Material Sciences and Nanosciences 

• Engineering 
- Semiconductor design 

- Earthquake and structural modeling 

- Computation fluid dynamics (airplane design) 

- Combustion (engine design) 

- Crash simulation 

• Business 
- Financial and economic modeling 

- Transaction processing, web services and search engines 

• Defense 
- Nuclear weapons -- test by simulations 

- Cryptography 
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Economic Impact of HPC 

• Airlines: 
- System-wide logistics optimization systems on parallel systems. 

- Savings: approx. $100 million per airline per year. 

• Automotive design: 
- Major automotive companies use large systems (500+ CPUs) for: 

- CAD-CAM, crash testing, structural integrity and 

aerodynamics. 

- One company has 500+ CPU parallel system. 

- Savings: approx. $1 billion per company per year. 

• Semiconductor industry: 
- Semiconductor firms use large systems (500+ CPUs) for 

- device electronics simulation and logic validation  

- Savings: approx. $1 billion per company per year. 

• Energy 
- Computational modeling improved performance of current 

nuclear power plants, equivalent to building two new power 

plants. 
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Drivers for Changes in Computational Science 

Nature, March 23, 2006 

“An important development in 

sciences is occurring at the 

intersection of  computer science and 

the sciences that has the potential to 

have a profound impact on science.” -
Science 2020 Report, March 2006 

• Continued exponential increase in computational 
power  simulation is becoming third pillar of 
science, complementing theory and experiment 

• Continued exponential increase in experimental 
data  techniques and technology in data 
analysis, visualization, analytics, networking, and 
collaboration tools are becoming essential in all 
data rich scientific applications 
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 Simulation:  The Third Pillar of Science  

• Traditional scientific and engineering method: 

(1) Do theory or paper design 

(2) Perform experiments or build system 

• Limitations: 

 –Too difficult—build large wind tunnels 

 –Too expensive—build a throw-away passenger jet 

 –Too slow—wait for climate or galactic evolution 

 –Too dangerous—weapons, drug design, climate 
  experimentation 

• Computational science and engineering paradigm: 

(3) Use computers to simulate and analyze the phenomenon 

- Based on known physical laws and efficient numerical methods 

- Analyze simulation results with computational tools and 
methods beyond what is possible manually 

 

 

Simulation 

Theory Experiment 
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$5B World Market in Technical Computing 
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Supercomputing in Auto Industry 

• NVIDIA Boosts IQ of Self-Driving Cars With World's First 
In-Car Artificial Intelligence Supercomputer. 

Jan 4, 2016. 
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Global Climate Modeling Problem 

• Problem is to compute: 

f(latitude, longitude, elevation, time)  “weather” =   

                    (temperature, pressure, humidity, wind velocity) 

•  Approach: 

- Discretize the domain, e.g., a measurement point every 10 km 

- Devise an algorithm to predict weather at time t+dt given t 

• Uses: 

- Predict major events, 
e.g., hurricane,  El Nino 

- Use in setting air 
emissions standards 

- Evaluate global warming 
scenarios 
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Global Climate Modeling Computation 

• One piece is modeling the fluid flow in the atmosphere 

- Solve Navier-Stokes equations 

- Roughly 100 Flops per grid point with 1 minute timestep 

• Computational requirements: 

- To match real-time, need 5 x 1011 flops in 60 seconds = 8 Gflop/s 

- Weather prediction (7 days in 24 hours)  56 Gflop/s 

- Climate prediction (50 years in 30 days)  4.8 Tflop/s 

- To use in policy negotiations (50 years in 12 hours)  288 Tflop/s 

• To double the grid resolution, computation is 8x to 16x  

• State of the art models require integration of 
atmosphere, clouds, ocean, sea-ice, land models, plus 
possibly carbon cycle, geochemistry and more 

• Current models are coarser than this 



Scalable Web Service/Processing 
Infrastructure 
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•Infrastructure scalability:  

Bigdata: Tens of billions of 

documents in web search 

Tens/hundreds  of thousands of 

machines. 

Tens/hundreds  of Millions of 

users 

Impact on response time, 

throughput, &availability, 

Platform software 
Google GFS, MapReduce and 
Bigtable .   
fundamental building blocks for 
fast data update/access and 
development cycles 

… 



Motif/Dwarf: Common Computational Methods   
(Red Hot  Blue Cool) 
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3 Graph Traversal
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5 Dense Matrix
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7 Spectral (FFT)

8 Dynamic Prog
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10 MapReduce

11 Backtrack/ B&B
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What  do commercial and CSE applications have in common? 
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Outline 

 

• Why powerful computers must be parallel processors  

 

• Large CSE/commerical problems require powerful 
computers 

 

• Performance models  

 

• Why writing (fast) parallel programs is hard 

 

Including your laptops and handhelds 

all 
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Principles of Parallel Computing 

• Finding enough parallelism  (Amdahl’s Law) 

• Granularity 

• Locality 

• Load balance 

• Coordination and synchronization 

• Performance modeling 

All of these things makes parallel programming 

even harder than sequential programming. 
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“Automatic” Parallelism in Modern Machines 

• Bit level parallelism 

- within floating point operations, etc. 

• Instruction level parallelism (ILP) 

- multiple instructions execute per clock cycle 

• Memory system parallelism 

- overlap of memory operations with computation 

• OS parallelism 

- multiple jobs run in parallel on commodity SMPs 

• I/O parallelism in storage level 

Limits to all of these -- for very high performance, need 

user to identify, schedule and coordinate parallel tasks 
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Finding Enough Parallelism 

• Suppose only part of an application seems parallel 

• Amdahl’s law 

- let x be the fraction of work done sequentially, so                                
(1-x) is fraction parallelizable 

- P = number of processors 

Speedup(P) = Time(1)/Time(P) 

                   <= 1/(x + (1-x)/P)  

                   <= 1/s 

• Even if the parallel part speeds up perfectly           
performance is limited by the sequential part 



1/5/2016   30 

Caveat: Amdahl’s Law 

Gene Amdahl 

Computer Pioneer 



31 

Overhead of Parallelism 

• Given enough parallel work, this is the biggest barrier to 
getting desired speedup 

• Parallelism overheads include: 

- cost of starting a thread or process 

- cost of accessing data, communicating shared data 

- cost of synchronizing 

- extra (redundant) computation 

• Each of these can be in the range of milliseconds   
(=millions of flops) on some systems 

• Tradeoff: Algorithm needs sufficiently large units of work 
to run fast in parallel (i.e. large granularity), but not so 
large that there is not enough parallel work  
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Locality and Parallelism 

• Large memories are slow, fast memories are small 

• Storage hierarchies are large and fast on average 

• Parallel processors, collectively, have large, fast cache 

- the slow accesses to “remote” data we call “communication” 

• Algorithm should do most work on local data 
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Load Imbalance 

• Load imbalance is the time that some processors in the 
system are idle due to 

- insufficient parallelism (during that phase) 

- unequal size tasks 

• Examples of the latter 

- adapting to “interesting parts of a domain” 

- tree-structured computations  

- fundamentally unstructured problems  

• Algorithm needs to balance load 

- Sometimes can determine work load, divide up evenly, before starting 

- “Static Load Balancing” 

- Sometimes work load changes dynamically, need to rebalance 
dynamically 

- “Dynamic Load Balancing” 
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Improving Real Performance 
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Peak Performance grows exponentially,    

a la Moore’s Law 

 In 1990’s, peak performance increased 100x; 

in 2000’s, it will increase 1000x 

But efficiency (the performance relative to 

the hardware peak) has declined 

 was 40-50% on the vector supercomputers 

of 1990s  

 now as little as 5-10% on parallel 

supercomputers of today 

 Close the gap through ... 

 Mathematical methods and algorithms that 

achieve high performance on a single 

processor and scale to thousands of 

processors 

 More efficient programming models and tools 

for massively parallel supercomputers 

Performance 

Gap 

Peak Performance 

Real Performance 
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Performance Levels 

• Peak performance 

- Sum of all speeds of all floating point units in the system 

- You can’t possibly compute faster than this speed 

• LINPACK  

- The “hello world” program for parallel performance 

- Solve Ax=b using Gaussian Elimination, highly tuned 

• Gordon Bell Prize winning applications performance 

- The right application/algorithm/platform combination plus years of work 

• Average sustained applications performance 

- What one reasonable can expect for standard applications 

When reporting performance results, these levels are 

often confused, even in reviewed publications 



36 

Performance Levels (for example on NERSC-5) 

• Peak advertised performance (PAP): 100 Tflop/s 

• LINPACK (TPP): 84 Tflop/s 

• Best climate application: 14 Tflop/s 

- WRF code benchmarked in December 2007 

• Average sustained applications performance: ? Tflop/s 

- Probably less than 10% peak! 

• We will study performance 

- Hardware and software tools to measure it 

- Identifying bottlenecks 

- Practical performance tuning (Matlab demo) 



Coping with Failures 

• 4 disks/server, 50,000 servers 

• Failure rate of disks: 2% to 10% / year 

-Assume 4% annual failure rate 

• On average, how often does a disk fail? 

a)1 / month 

b)1 / week 

c)1 / day 

d)1 / hour 
 

37 



Coping with Failures 
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b)1 / week 

c)1 / day 
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50,000 x 4 = 200,000 disks 

200,000 x 4% = 8000 disks fail 

365 days x 24 hours = 8760 hours 



Dependability via Redundancy 

• Redundancy so that a failing piece doesn’t make the whole 
system fail 
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1+1=2 1+1=2 1+1=1 

1+1=2 
2 of 3 agree 

FAIL! 

Increasing transistor density reduces the cost of redundancy 



Dependability via Redundancy 

• Applies to everything from datacenters to storage 
to memory to instructors 

- Redundant datacenters so that can lose 1 datacenter 
but Internet service stays online 

- Redundant disks so that can lose 1 disk but not lose 
data (Redundant Arrays of Independent Disks/RAID) 

- Redundant memory bits of so that can lose 1 bit but no 
data (Error Correcting Code/ECC Memory) 

 

 

40 



41 

What you should get out of the course 

In depth understanding of: 

• When is parallel computing useful? 

• Understanding of parallel computing hardware options. 

• Overview of programming models (software) and tools. 

• Some important parallel applications and the algorithms 

• Performance analysis and tuning 

• Exposure to various open research questions 
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Course Deadlines (Tentative) 
• Week 2: join Google discussion group. Open Comet cluster account. 

• End of Jan 

- HW1 (C programming) 

- 1-page project proposal.  
The content includes: Problem description, challenges (what is new?), 
what to deliver, how to test and what to measure, milestones, and 
references 

- Meet with me 

• Feb 18 week: Paper review presentation and project 
progress. 

• End of Feb 

- . HW2 due. (Python or Java programming) 

• Final Week. Take-home exam. Final project presentation/report.  

• Weight distribution: max(option1, option2) 

- Option 1: Project 40%. Exam 40%. HW 20% 

- Option 2: Project 70%. Exam 20%. HW 10% 
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