
1

CS240A: Applied Parallel
Computing

Introduction

2

CS 240A Course Information

• Web page:

 http://www.cs.ucsb.edu/~tyang/class/240a16w

• Class schedule: Tu/Th. 11:00AM-12:50pm Phelp 2510

• Instructor: Tao Yang (tyang at cs).

- Office Hours: Tu/Th 10-11(or email me for appointments or just stop by my
office). HFH building, Room 5113

http://www.cs.ucsb.edu/~tyang
http://www.cs.ucsb.edu/~tyang

3

Topics

• High performance computing

- Basics of computer architecture, clusters/cloud systems.

- Memory hierarchies,

- High throughput computing

• Parallel Programming Models and Machines.
Software/libraries

- Shared memory vs distributed memory

- Threads, OpenMP, MPI, MapReduce, Spark.

- SIMD

• Patterns of parallelism. Optimization techniques for
parallelization and performance

• Parallelism in Scientific Computing and Applications

- Core algorithms (Dense & Sparse Linear Algebra)

• Parallelism in data-intensive applications and systems

4

What you should get out of the course

In depth understanding of:

• How to maximize the use of CPU/cache for high
performance computing

• When is parallel computing useful?

• Understanding of parallel computing hardware options.

• Overview of programming models (software) and tools.

• Some parallel applications and the algorithms

• Performance analysis and tuning

• Exposure to various open research questions

5

Introduction: Outline

• Why powerful computers must be parallel computing

• Why parallel processing?

- Large Computational Science and Engineering (CSE) problems
require powerful computers

- Commercial data-oriented computing also needs.

• Basic parallel performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

6

Metrics in Scientific Computing Worlds

• High Performance Computing (HPC) units are:

- Flop: floating point operation, usually double precision unless noted

- Flop/s: floating point operations per second

- Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…

Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes

Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

• Current fastest (public) machine ~ 27 Pflop/s

- Up-to-date list at www.top500.org

7

Gordon Moore

Intel Cofounder

B.S. Cal 1950!

#
 o

f
tr

a
n

s
is

to
rs

 o
n

 a
n

in

te
g

ra
te

d
 c

ir
c

u
it

 (
IC

)

Year

#2: Moore’s Law

Predicts:

2X Transistors /

chip

every 2 years

8

Revolution in Processors

• Chip density is continuing increase ~2x every 2 years
• Clock speed is not
• Number of processor cores may double instead
• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

9

 Impact of Parallelism

• All major processor vendors are producing multicore chips

- Every machine will soon be a parallel machine

- To keep doubling performance, parallelism must double

• Which commercial applications can use this parallelism?

- Do they have to be rewritten from scratch?

• Will all programmers have to be parallel programmers?

- New software model needed

- Try to hide complexity from most programmers – eventually

• Computer industry betting on this big change, but does not
have all the answers

10

Memory is Not Keeping Pace

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Memory density is doubling every three years; processor logic is every two

Question: Can you double concurrency without doubling memory?
• Strong scaling: fixed problem size, increase number of processors
• Weak scaling: grow problem size proportionally to number of

processors

• Listing the 500 most powerful computers
in the world

• Linpack performance

- Solve Ax=b, dense problem, matrix is random

- Dominated by dense matrix-matrix multiply

• Update twice a year:

- ISC’xy in June in Germany

- SCxy in November in the U.S.

• All information available from the TOP500
web site at: www.top500.org

The TOP500 Project

Rank Site System Cores

Rmax

(TFlop/s)

Rpeak

(TFlop/s)

Power

(kW)

1 National

Super

Computer

Center in

Guangzho

u

China

Tianhe-2

(MilkyWay-2) -

TH-IVB-FEP

Cluster, Intel Xeon

E5-2692 12C

2.200GHz, TH

Express-2, Intel

Xeon Phi 31S1P

NUDT

3,120,0

00

33,862.7 54,902.4 17,808

2 DOE/SC/O

ak Ridge

National

Laboratory

United

States

Titan - Cray XK7 ,

Opteron 6274 16C

2.200GHz, Cray

Gemini

interconnect,

NVIDIA K20x

Cray Inc.

560,640 17,590.0 27,112.5 8,209

From www.top500.org, Nov 2015

http://top500.org/site/50365
http://top500.org/site/50365
http://top500.org/site/50365
http://top500.org/site/50365
http://top500.org/site/50365
http://top500.org/site/50365
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/system/177999
http://top500.org/site/48553
http://top500.org/site/48553
http://top500.org/site/48553
http://top500.org/site/48553
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://top500.org/system/177975
http://www.top500.org/

Moore’s Law reinterpreted

• Number of cores per chip will double every
two years

• Clock speed will not increase (possibly
decrease)

• Need to deal with systems with millions of
concurrent threads

• Need to deal with inter-chip parallelism as
well as intra-chip parallelism

14

Outline

• Why powerful computers must be parallel processors

• Large Computational Science&Engineering and
commercial problems require powerful computers

• Basic performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

15

Some Particularly Challenging Computations

• Science
- Global climate modeling

- Biology: genomics; protein folding; drug design

- Astrophysical modeling

- Computational Chemistry

- Computational Material Sciences and Nanosciences

• Engineering
- Semiconductor design

- Earthquake and structural modeling

- Computation fluid dynamics (airplane design)

- Combustion (engine design)

- Crash simulation

• Business
- Financial and economic modeling

- Transaction processing, web services and search engines

• Defense
- Nuclear weapons -- test by simulations

- Cryptography

16

Economic Impact of HPC

• Airlines:
- System-wide logistics optimization systems on parallel systems.

- Savings: approx. $100 million per airline per year.

• Automotive design:
- Major automotive companies use large systems (500+ CPUs) for:

- CAD-CAM, crash testing, structural integrity and

aerodynamics.

- One company has 500+ CPU parallel system.

- Savings: approx. $1 billion per company per year.

• Semiconductor industry:
- Semiconductor firms use large systems (500+ CPUs) for

- device electronics simulation and logic validation

- Savings: approx. $1 billion per company per year.

• Energy
- Computational modeling improved performance of current

nuclear power plants, equivalent to building two new power

plants.

17

Drivers for Changes in Computational Science

Nature, March 23, 2006

“An important development in

sciences is occurring at the

intersection of computer science and

the sciences that has the potential to

have a profound impact on science.” -
Science 2020 Report, March 2006

• Continued exponential increase in computational
power simulation is becoming third pillar of
science, complementing theory and experiment

• Continued exponential increase in experimental
data techniques and technology in data
analysis, visualization, analytics, networking, and
collaboration tools are becoming essential in all
data rich scientific applications

18

 Simulation: The Third Pillar of Science

• Traditional scientific and engineering method:

(1) Do theory or paper design

(2) Perform experiments or build system

• Limitations:

 –Too difficult—build large wind tunnels

 –Too expensive—build a throw-away passenger jet

 –Too slow—wait for climate or galactic evolution

 –Too dangerous—weapons, drug design, climate
 experimentation

• Computational science and engineering paradigm:

(3) Use computers to simulate and analyze the phenomenon

- Based on known physical laws and efficient numerical methods

- Analyze simulation results with computational tools and
methods beyond what is possible manually

Simulation

Theory Experiment

19

$5B World Market in Technical Computing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 Other

Technical Management and

Support

Simulation

Scientific Research and R&D

Mechanical

Design/Engineering Analysis

Mechanical Design and

Drafting

Imaging

Geoscience and Geo-

engineering

Electrical Design/Engineering

Analysis

Economics/Financial

Digital Content Creation and

Distribution

Classified Defense

Chemical Engineering

Biosciences

Source: IDC 2004, from NRC Future of Supercomputing Report

20

Supercomputing in Auto Industry

• NVIDIA Boosts IQ of Self-Driving Cars With World's First
In-Car Artificial Intelligence Supercomputer.

Jan 4, 2016.

22

Global Climate Modeling Problem

• Problem is to compute:

f(latitude, longitude, elevation, time) “weather” =

 (temperature, pressure, humidity, wind velocity)

• Approach:

- Discretize the domain, e.g., a measurement point every 10 km

- Devise an algorithm to predict weather at time t+dt given t

• Uses:

- Predict major events,
e.g., hurricane, El Nino

- Use in setting air
emissions standards

- Evaluate global warming
scenarios

23

Global Climate Modeling Computation

• One piece is modeling the fluid flow in the atmosphere

- Solve Navier-Stokes equations

- Roughly 100 Flops per grid point with 1 minute timestep

• Computational requirements:

- To match real-time, need 5 x 1011 flops in 60 seconds = 8 Gflop/s

- Weather prediction (7 days in 24 hours) 56 Gflop/s

- Climate prediction (50 years in 30 days) 4.8 Tflop/s

- To use in policy negotiations (50 years in 12 hours) 288 Tflop/s

• To double the grid resolution, computation is 8x to 16x

• State of the art models require integration of
atmosphere, clouds, ocean, sea-ice, land models, plus
possibly carbon cycle, geochemistry and more

• Current models are coarser than this

Scalable Web Service/Processing
Infrastructure

24

•Infrastructure scalability:

Bigdata: Tens of billions of

documents in web search

Tens/hundreds of thousands of

machines.

Tens/hundreds of Millions of

users

Impact on response time,

throughput, &availability,

Platform software
Google GFS, MapReduce and
Bigtable .
fundamental building blocks for
fast data update/access and
development cycles

…

Motif/Dwarf: Common Computational Methods
(Red Hot Blue Cool)

E
m

b
e

d

S
P

E
C

D
B

G
a

m
e

s

M
L

H
P

C

Health Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

What do commercial and CSE applications have in common?

26

Outline

• Why powerful computers must be parallel processors

• Large CSE/commerical problems require powerful
computers

• Performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

27

Principles of Parallel Computing

• Finding enough parallelism (Amdahl’s Law)

• Granularity

• Locality

• Load balance

• Coordination and synchronization

• Performance modeling

All of these things makes parallel programming

even harder than sequential programming.

28

“Automatic” Parallelism in Modern Machines

• Bit level parallelism

- within floating point operations, etc.

• Instruction level parallelism (ILP)

- multiple instructions execute per clock cycle

• Memory system parallelism

- overlap of memory operations with computation

• OS parallelism

- multiple jobs run in parallel on commodity SMPs

• I/O parallelism in storage level

Limits to all of these -- for very high performance, need

user to identify, schedule and coordinate parallel tasks

29

Finding Enough Parallelism

• Suppose only part of an application seems parallel

• Amdahl’s law

- let x be the fraction of work done sequentially, so
(1-x) is fraction parallelizable

- P = number of processors

Speedup(P) = Time(1)/Time(P)

 <= 1/(x + (1-x)/P)

 <= 1/s

• Even if the parallel part speeds up perfectly
performance is limited by the sequential part

1/5/2016 30

Caveat: Amdahl’s Law

Gene Amdahl

Computer Pioneer

31

Overhead of Parallelism

• Given enough parallel work, this is the biggest barrier to
getting desired speedup

• Parallelism overheads include:

- cost of starting a thread or process

- cost of accessing data, communicating shared data

- cost of synchronizing

- extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of work
to run fast in parallel (i.e. large granularity), but not so
large that there is not enough parallel work

32

Locality and Parallelism

• Large memories are slow, fast memories are small

• Storage hierarchies are large and fast on average

• Parallel processors, collectively, have large, fast cache

- the slow accesses to “remote” data we call “communication”

• Algorithm should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional

Storage

Hierarchy
Proc

Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

p
o
te

n
tia

l

in
te

rc
o
n
n
e
c
ts

33

Load Imbalance

• Load imbalance is the time that some processors in the
system are idle due to

- insufficient parallelism (during that phase)

- unequal size tasks

• Examples of the latter

- adapting to “interesting parts of a domain”

- tree-structured computations

- fundamentally unstructured problems

• Algorithm needs to balance load

- Sometimes can determine work load, divide up evenly, before starting

- “Static Load Balancing”

- Sometimes work load changes dynamically, need to rebalance
dynamically

- “Dynamic Load Balancing”

34

Improving Real Performance

0.1

1

10

100

1,000

2000 2004
T
e
ra

fl
o

p
s

1996

Peak Performance grows exponentially,

a la Moore’s Law

 In 1990’s, peak performance increased 100x;

in 2000’s, it will increase 1000x

But efficiency (the performance relative to

the hardware peak) has declined

 was 40-50% on the vector supercomputers

of 1990s

 now as little as 5-10% on parallel

supercomputers of today

 Close the gap through ...

 Mathematical methods and algorithms that

achieve high performance on a single

processor and scale to thousands of

processors

 More efficient programming models and tools

for massively parallel supercomputers

Performance

Gap

Peak Performance

Real Performance

35

Performance Levels

• Peak performance

- Sum of all speeds of all floating point units in the system

- You can’t possibly compute faster than this speed

• LINPACK

- The “hello world” program for parallel performance

- Solve Ax=b using Gaussian Elimination, highly tuned

• Gordon Bell Prize winning applications performance

- The right application/algorithm/platform combination plus years of work

• Average sustained applications performance

- What one reasonable can expect for standard applications

When reporting performance results, these levels are

often confused, even in reviewed publications

36

Performance Levels (for example on NERSC-5)

• Peak advertised performance (PAP): 100 Tflop/s

• LINPACK (TPP): 84 Tflop/s

• Best climate application: 14 Tflop/s

- WRF code benchmarked in December 2007

• Average sustained applications performance: ? Tflop/s

- Probably less than 10% peak!

• We will study performance

- Hardware and software tools to measure it

- Identifying bottlenecks

- Practical performance tuning (Matlab demo)

Coping with Failures

• 4 disks/server, 50,000 servers

• Failure rate of disks: 2% to 10% / year

-Assume 4% annual failure rate

• On average, how often does a disk fail?

a)1 / month

b)1 / week

c)1 / day

d)1 / hour

37

Coping with Failures

• 4 disks/server, 50,000 servers

• Failure rate of disks: 2% to 10% / year

-Assume 4% annual failure rate

• On average, how often does a disk fail?

a)1 / month

b)1 / week

c)1 / day

d)1 / hour

38

50,000 x 4 = 200,000 disks

200,000 x 4% = 8000 disks fail

365 days x 24 hours = 8760 hours

Dependability via Redundancy

• Redundancy so that a failing piece doesn’t make the whole
system fail

39

1+1=2 1+1=2 1+1=1

1+1=2
2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy

Dependability via Redundancy

• Applies to everything from datacenters to storage
to memory to instructors

- Redundant datacenters so that can lose 1 datacenter
but Internet service stays online

- Redundant disks so that can lose 1 disk but not lose
data (Redundant Arrays of Independent Disks/RAID)

- Redundant memory bits of so that can lose 1 bit but no
data (Error Correcting Code/ECC Memory)

40

41

What you should get out of the course

In depth understanding of:

• When is parallel computing useful?

• Understanding of parallel computing hardware options.

• Overview of programming models (software) and tools.

• Some important parallel applications and the algorithms

• Performance analysis and tuning

• Exposure to various open research questions

42

Course Deadlines (Tentative)
• Week 2: join Google discussion group. Open Comet cluster account.

• End of Jan

- HW1 (C programming)

- 1-page project proposal.
The content includes: Problem description, challenges (what is new?),
what to deliver, how to test and what to measure, milestones, and
references

- Meet with me

• Feb 18 week: Paper review presentation and project
progress.

• End of Feb

- . HW2 due. (Python or Java programming)

• Final Week. Take-home exam. Final project presentation/report.

• Weight distribution: max(option1, option2)

- Option 1: Project 40%. Exam 40%. HW 20%

- Option 2: Project 70%. Exam 20%. HW 10%

43

44

45

46

47

