
CS240A, T. Yang, 2016

1

Parallel
Programming with

OpenMP

2

A Programmer’s View of OpenMP

• What is OpenMP?

• Open specification for Multi-Processing

• “Standard” API for defining multi-threaded shared-memory

programs

• openmp.org – Talks, examples, forums, etc.

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:
• Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

http://www.openmp.org/

3

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;

 }

4

Motivation – OpenMP

 int main() {

 omp_set_num_threads(4);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

Printf Printf Printf Printf

All OpenMP directives begin: #pragma

OpenMP parallel region construct

• Block of code to be executed by multiple threads in

parallel

• Each thread executes the same code redundantly

(SPMD)

• Work within work-sharing constructs is distributed among the

threads in a team

• Example with C/C++ syntax

 #pragma omp parallel [clause [clause] ...] new-line

 structured-block

• clause can include the following:

private (list)

shared (list)

• Example: OpenMP default is shared variables

To make private, need to declare with pragma:

 #pragma omp parallel private (x)

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread) and

executes sequentially until the first parallel region construct is

encountered
• FORK: Master thread then creates a team of parallel threads

• Statements in program that are enclosed by the parallel region construct are

executed in parallel among the various threads

• JOIN: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

6

Sequential

code

Thread 1

Thread 0

Thread 1

Thread 0

parallel Pragma and Scope – More Examples

#pragma omp parallel num_threads(2)

 {

 x=1;

 y=1+x;

 }

7

X=1;

y=1+x;

x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

parallel Pragma and Scope - Review

#pragma omp parallel

 {

 x=1;

 y=1+x;

 }

8

X=1;

y=1+x;

x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

Assume number of threads=2

Thread 0 Thread 1

parallel Pragma and Scope - Review

#pragma omp parallel num_threads(2)

 {

 x=1; y=1+x;

 }

9

X=1;

y=x+1;

x=1;

y=x+1;

X and y are shared variables. There is a risk of data race

Divide for-loop for parallel sections

for (int i=0; i<8; i++) x[i]=0; //run on 4 threads

#pragma omp parallel

 {

 int numt=omp_get_num_thread();

 int id = omp_get_thread_num(); //id=0, 1, 2, or 3

 for (int i=id; i<8; i +=numt)

 x[i]=0;

 }

10

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

// Assume number of threads=4

Thread 0 Thread 1 Thread 2 Thread 3

Use pragma parallel for

for (int i=0; i<8; i++) x[i]=0;

#pragma omp parallel for

{

 for (int i=0; i<8; i++)

 x[i]=0;

}

 System divides loop iterations to threads

11

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

OpenMP Data Parallel Construct: Parallel Loop

• Compiler calculates loop bounds for each thread directly

from serial source (computation decomposition)

• Compiler also manages data partitioning

• Synchronization also automatic (barrier)

13

Programming Model – Parallel Loops

• Requirement for parallel loops

• No data dependencies

(reads/write or write/write

pairs) between iterations!

• Preprocessor calculates loop

bounds and divide iterations

among parallel threads

?

for(i=0; i < 25; i++)

{

 printf(“Foo”);

}

#pragma omp parallel for

Example

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a

separate thread

• e.g. if max = 100 with 2 threads:

 assign 0-49 to thread 0, and 50-99 to thread 1

• Must have relatively simple “shape” for an OpenMP-aware

compiler to be able to parallelize it

• Necessary for the run-time system to be able to determine how

many of the loop iterations to assign to each thread

• No premature exits from the loop allowed

• i.e. No break, return, exit, goto statements

14

In general,

don’t jump

outside of

any pragma

block

Parallel Statement Shorthand

#pragma omp parallel

{

 #pragma omp for

 for(i=0;i<max;i++) { … }

}

can be shortened to:

#pragma omp parallel for

 for(i=0;i<max;i++) { … }

• Also works for sections

15

This is the

only directive

in the parallel

section

Example: Calculating π

16

Sequential Calculation of π in C

#include <stdio.h> /* Serial Code */

static long num_steps = 100000;

double step;

void main () {

 int i;

 double x, pi, sum = 0.0;

 step = 1.0/(double)num_steps;

 for (i = 1; i <= num_steps; i++) {

 x = (i - 0.5) * step;

 sum = sum + 4.0 / (1.0 + x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.12f\n", pi);

}

17

Parallel OpenMP Version (1)

#include <omp.h>

#define NUM_THREADS 4

static long num_steps = 100000; double step;

void main () {

 int i; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 #pragma omp parallel private (i, x)

 {

 int id = omp_get_thread_num();

 for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=1; i<NUM_THREADS; i++)

 sum[0] += sum[i]; pi = sum[0] / num_steps

 printf ("pi = %6.12f\n", pi);

}
18

OpenMP Reduction

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

 sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that 1 or more variables that are

private to each thread are subject of reduction operation at
end of parallel region:
reduction(operation:var) where

• Operation: operator to perform on the variables (var) at the end of the
parallel region

• Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

 sum += A[i];
avg = sum/MAX;

19

Sum+=A[0]

Sum+=A[1]

Sum+=A[2]

Sum+=A[3]

Sum+=A[0]

Sum+=A[1]

Sum+=A[2]

Sum+=A[3]

OpenMp: Parallel Loops with Reductions

• OpenMP supports reduce operation

sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++) {

sum += array[i];

}

• Reduce ops and init() values (C and C++):

+ 0 bitwise & ~0 logical & 1

- 0 bitwise | 0 logical | 0

* 1 bitwise ^ 0

Calculating π Version (1) - review

#include <omp.h>

#define NUM_THREADS 4

static long num_steps = 100000; double step;

void main () {

 int i; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 #pragma omp parallel private (i, x)

 {

 int id = omp_get_thread_num();

 for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=1; i<NUM_THREADS; i++)

 sum[0] += sum[i]; pi = sum[0] / num_steps

 printf ("pi = %6.12f\n", pi);

}
21

Version 2: parallel for, reduction

#include <omp.h>

#include <stdio.h>

/static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=1; i<= num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.8f\n", pi);

}

22

Loop Scheduling in Parallel for pragma

#pragma omp parallel for

 for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads, each
with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index which is
private per thread (Why?)

• Implicit “barrier” synchronization at end of for
loop

• Divide index regions sequentially per thread
• Thread 0 gets 0, 1, …, (max/n)-1;
• Thread 1 gets max/n, max/n+1, …, 2*(max/n)-1
• Why?

23

Impact of Scheduling Decision

• Load balance

• Same work in each iteration?

• Processors working at same speed?

• Scheduling overhead

• Static decisions are cheap because they require no run-time

coordination

• Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions

• Data locality

• Particularly within cache lines for small chunk sizes

• Also impacts data reuse on same processor

OpenMP environment variables

OMP_NUM_THREADS

 sets the number of threads to use during execution

 when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of

threads to use

 For example,

 setenv OMP_NUM_THREADS 16 [csh, tcsh]

 export OMP_NUM_THREADS=16 [sh, ksh, bash]

OMP_SCHEDULE

 applies only to do/for and parallel do/for directives that have the

schedule type RUNTIME

 sets schedule type and chunk size for all such loops

 For example,

 setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]

 export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

26

Programming Model – Loop Scheduling

• schedule clause determines how loop iterations are

divided among the thread team
•static([chunk]) divides iterations statically between

threads

• Each thread receives [chunk] iterations, rounding as necessary to

account for all iterations

• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,

allocating an additional [chunk] iterations when a thread

finishes

• Forms a logical work queue, consisting of all loop iterations

• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is

exponentially reduced with each allocation

Loop scheduling options

2 (2)

28

Programming Model – Data Sharing

• Parallel programs often employ

two types of data

• Shared data, visible to all

threads, similarly named

• Private data, visible to a single

thread (often stack-allocated)

• OpenMP:

• shared variables are shared

• private variables are private

• PThreads:

• Global-scoped variables are

shared

• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

29

Programming Model - Synchronization

• OpenMP Synchronization

• OpenMP Critical Sections

• Named or unnamed

• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions

• When all else fails – may

require flush directive

• Single-thread regions within

parallel regions

• master, single directives

#pragma omp critical

{

 /* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);

/* Code goes here */

omp_unset_lock(lock l);

#pragma omp single

{

 /* Only executed once */

}

Omp critical vs. atomic

int sum=0

#pragma omp parallel for

 for(int j=1; j <n; j++){

 int x = j*j;

 #pragma omp critical

 {

 sum=sum+x;// One thread enters the critical section at a time.

 }

* May also use

 #pragma omp atomic

 x += exper

• Faster, but can support only limited arithmetic operation such as

++, --, +=, -=, *=, /=, &=, |=

30

OpenMP Timing

• Elapsed wall clock time:

 double omp_get_wtime(void);

• Returns elapsed wall clock time in seconds

• Time is measured per thread, no guarantee can be made that two

distinct threads measure the same time

• Time is measured from “some time in the past,” so subtract

results of two calls to omp_get_wtime to get elapsed time

31

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

T1

T1 T2

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

33

T2

T1 T2

Matrix Multiply in OpenMP

// C[M][N] = A[M][P] × B[P][N]

start_time = omp_get_wtime();

#pragma omp parallel for private(tmp, j, k)

 for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 tmp = 0.0;

 for(k=0; k<P; k++){

 /* C(i,j) = sum(over k) A(i,k) * B(k,j)*/

 tmp += A[i][k] * B[k][j];

 }

 C[i][j] = tmp;

 }

 }

run_time = omp_get_wtime() - start_time;

34

Outer loop spread across

N threads;

inner loops inside a single

thread

35

OpenMP Summary

• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based

code with fork-join parallelism
•pragma omp parallel

•pragma omp parallel for

•pragma omp parallel private (i, x)

•pragma omp atomic

•pragma omp critical

• #pragma omp for reduction(+ : sum)

• OpenMP performs comparably to manually-coded

threading

• Not a silver bullet for all applications

