
CS240A, T. Yang, 2016

1

Parallel
Programming with

OpenMP

2

A Programmer’s View of OpenMP

• What is OpenMP?

• Open specification for Multi-Processing

• “Standard” API for defining multi-threaded shared-memory

programs

• openmp.org – Talks, examples, forums, etc.

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:
• Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

http://www.openmp.org/

3

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;

 }

4

Motivation – OpenMP

 int main() {

 omp_set_num_threads(4);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

Printf Printf Printf Printf

All OpenMP directives begin: #pragma

OpenMP parallel region construct

• Block of code to be executed by multiple threads in

parallel

• Each thread executes the same code redundantly

(SPMD)

• Work within work-sharing constructs is distributed among the

threads in a team

• Example with C/C++ syntax

 #pragma omp parallel [clause [clause] ...] new-line

 structured-block

• clause can include the following:

private (list)

shared (list)

• Example: OpenMP default is shared variables

To make private, need to declare with pragma:

 #pragma omp parallel private (x)

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread) and

executes sequentially until the first parallel region construct is

encountered
• FORK: Master thread then creates a team of parallel threads

• Statements in program that are enclosed by the parallel region construct are

executed in parallel among the various threads

• JOIN: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

6

Sequential

code

Thread 1

Thread 0

Thread 1

Thread 0

parallel Pragma and Scope – More Examples

#pragma omp parallel num_threads(2)

 {

 x=1;

 y=1+x;

 }

7

X=1;

y=1+x;

x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

parallel Pragma and Scope - Review

#pragma omp parallel

 {

 x=1;

 y=1+x;

 }

8

X=1;

y=1+x;

x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

Assume number of threads=2

Thread 0 Thread 1

parallel Pragma and Scope - Review

#pragma omp parallel num_threads(2)

 {

 x=1; y=1+x;

 }

9

X=1;

y=x+1;

x=1;

y=x+1;

X and y are shared variables. There is a risk of data race

Divide for-loop for parallel sections

for (int i=0; i<8; i++) x[i]=0; //run on 4 threads

#pragma omp parallel

 {

 int numt=omp_get_num_thread();

 int id = omp_get_thread_num(); //id=0, 1, 2, or 3

 for (int i=id; i<8; i +=numt)

 x[i]=0;

 }

10

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

// Assume number of threads=4

Thread 0 Thread 1 Thread 2 Thread 3

Use pragma parallel for

for (int i=0; i<8; i++) x[i]=0;

#pragma omp parallel for

{

 for (int i=0; i<8; i++)

 x[i]=0;

}

 System divides loop iterations to threads

11

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

OpenMP Data Parallel Construct: Parallel Loop

• Compiler calculates loop bounds for each thread directly

from serial source (computation decomposition)

• Compiler also manages data partitioning

• Synchronization also automatic (barrier)

13

Programming Model – Parallel Loops

• Requirement for parallel loops

• No data dependencies

(reads/write or write/write

pairs) between iterations!

• Preprocessor calculates loop

bounds and divide iterations

among parallel threads

?

for(i=0; i < 25; i++)

{

 printf(“Foo”);

}

#pragma omp parallel for

Example

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a

separate thread

• e.g. if max = 100 with 2 threads:

 assign 0-49 to thread 0, and 50-99 to thread 1

• Must have relatively simple “shape” for an OpenMP-aware

compiler to be able to parallelize it

• Necessary for the run-time system to be able to determine how

many of the loop iterations to assign to each thread

• No premature exits from the loop allowed

• i.e. No break, return, exit, goto statements

14

In general,

don’t jump

outside of

any pragma

block

Parallel Statement Shorthand

#pragma omp parallel

{

 #pragma omp for

 for(i=0;i<max;i++) { … }

}

can be shortened to:

#pragma omp parallel for

 for(i=0;i<max;i++) { … }

• Also works for sections

15

This is the

only directive

in the parallel

section

Example: Calculating π

16

Sequential Calculation of π in C

#include <stdio.h> /* Serial Code */

static long num_steps = 100000;

double step;

void main () {

 int i;

 double x, pi, sum = 0.0;

 step = 1.0/(double)num_steps;

 for (i = 1; i <= num_steps; i++) {

 x = (i - 0.5) * step;

 sum = sum + 4.0 / (1.0 + x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.12f\n", pi);

}

17

Parallel OpenMP Version (1)

#include <omp.h>

#define NUM_THREADS 4

static long num_steps = 100000; double step;

void main () {

 int i; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 #pragma omp parallel private (i, x)

 {

 int id = omp_get_thread_num();

 for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=1; i<NUM_THREADS; i++)

 sum[0] += sum[i]; pi = sum[0] / num_steps

 printf ("pi = %6.12f\n", pi);

}
18

OpenMP Reduction

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

 sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that 1 or more variables that are

private to each thread are subject of reduction operation at
end of parallel region:
reduction(operation:var) where

• Operation: operator to perform on the variables (var) at the end of the
parallel region

• Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

 sum += A[i];
avg = sum/MAX;

19

Sum+=A[0]

Sum+=A[1]

Sum+=A[2]

Sum+=A[3]

Sum+=A[0]

Sum+=A[1]

Sum+=A[2]

Sum+=A[3]

OpenMp: Parallel Loops with Reductions

• OpenMP supports reduce operation

sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++) {

sum += array[i];

}

• Reduce ops and init() values (C and C++):

+ 0 bitwise & ~0 logical & 1

- 0 bitwise | 0 logical | 0

* 1 bitwise ^ 0

Calculating π Version (1) - review

#include <omp.h>

#define NUM_THREADS 4

static long num_steps = 100000; double step;

void main () {

 int i; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 #pragma omp parallel private (i, x)

 {

 int id = omp_get_thread_num();

 for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=1; i<NUM_THREADS; i++)

 sum[0] += sum[i]; pi = sum[0] / num_steps

 printf ("pi = %6.12f\n", pi);

}
21

Version 2: parallel for, reduction

#include <omp.h>

#include <stdio.h>

/static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=1; i<= num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.8f\n", pi);

}

22

Loop Scheduling in Parallel for pragma

#pragma omp parallel for

 for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads, each
with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index which is
private per thread (Why?)

• Implicit “barrier” synchronization at end of for
loop

• Divide index regions sequentially per thread
• Thread 0 gets 0, 1, …, (max/n)-1;
• Thread 1 gets max/n, max/n+1, …, 2*(max/n)-1
• Why?

23

Impact of Scheduling Decision

• Load balance

• Same work in each iteration?

• Processors working at same speed?

• Scheduling overhead

• Static decisions are cheap because they require no run-time

coordination

• Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions

• Data locality

• Particularly within cache lines for small chunk sizes

• Also impacts data reuse on same processor

OpenMP environment variables

OMP_NUM_THREADS

 sets the number of threads to use during execution

 when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of

threads to use

 For example,

 setenv OMP_NUM_THREADS 16 [csh, tcsh]

 export OMP_NUM_THREADS=16 [sh, ksh, bash]

OMP_SCHEDULE

 applies only to do/for and parallel do/for directives that have the

schedule type RUNTIME

 sets schedule type and chunk size for all such loops

 For example,

 setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]

 export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

26

Programming Model – Loop Scheduling

• schedule clause determines how loop iterations are

divided among the thread team
•static([chunk]) divides iterations statically between

threads

• Each thread receives [chunk] iterations, rounding as necessary to

account for all iterations

• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,

allocating an additional [chunk] iterations when a thread

finishes

• Forms a logical work queue, consisting of all loop iterations

• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is

exponentially reduced with each allocation

Loop scheduling options

2 (2)

28

Programming Model – Data Sharing

• Parallel programs often employ

two types of data

• Shared data, visible to all

threads, similarly named

• Private data, visible to a single

thread (often stack-allocated)

• OpenMP:

• shared variables are shared

• private variables are private

• PThreads:

• Global-scoped variables are

shared

• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

29

Programming Model - Synchronization

• OpenMP Synchronization

• OpenMP Critical Sections

• Named or unnamed

• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions

• When all else fails – may

require flush directive

• Single-thread regions within

parallel regions

• master, single directives

#pragma omp critical

{

 /* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);

/* Code goes here */

omp_unset_lock(lock l);

#pragma omp single

{

 /* Only executed once */

}

Omp critical vs. atomic

int sum=0

#pragma omp parallel for

 for(int j=1; j <n; j++){

 int x = j*j;

 #pragma omp critical

 {

 sum=sum+x;// One thread enters the critical section at a time.

 }

* May also use

 #pragma omp atomic

 x += exper

• Faster, but can support only limited arithmetic operation such as

++, --, +=, -=, *=, /=, &=, |=

30

OpenMP Timing

• Elapsed wall clock time:

 double omp_get_wtime(void);

• Returns elapsed wall clock time in seconds

• Time is measured per thread, no guarantee can be made that two

distinct threads measure the same time

• Time is measured from “some time in the past,” so subtract

results of two calls to omp_get_wtime to get elapsed time

31

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

T1

T1 T2

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

33

T2

T1 T2

Matrix Multiply in OpenMP

// C[M][N] = A[M][P] × B[P][N]

start_time = omp_get_wtime();

#pragma omp parallel for private(tmp, j, k)

 for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 tmp = 0.0;

 for(k=0; k<P; k++){

 /* C(i,j) = sum(over k) A(i,k) * B(k,j)*/

 tmp += A[i][k] * B[k][j];

 }

 C[i][j] = tmp;

 }

 }

run_time = omp_get_wtime() - start_time;

34

Outer loop spread across

N threads;

inner loops inside a single

thread

35

OpenMP Summary

• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based

code with fork-join parallelism
•pragma omp parallel

•pragma omp parallel for

•pragma omp parallel private (i, x)

•pragma omp atomic

•pragma omp critical

• #pragma omp for reduction(+ : sum)

• OpenMP performs comparably to manually-coded

threading

• Not a silver bullet for all applications

