Parallel
Programming with
OpenMP

CS240A, T. Yang, 2016

A Programmer’s View of OpenMP

* What is OpenMP?

* Open specification for Multi-Processing

 “Standard” API for defining multi-threaded shared-memory
programs

« openmp.org — Talks, examples, forums, etc.

* OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax
« Exact behavior depends on OpenMP implementation!
« Requires compiler support (C or Fortran)

* OpenMP will:

* Allow a programmer to separate a program into serial regions and
parallel regions, rather than T concurrently-executing threads.

« Hide stack management
 Provide synchronization constructs

e OpenMP will not:
 Parallelize automatically

« Guarantee speedup
* Provide freedom from data races 5

http://www.openmp.org/

Motivation — OpenMP

int main() {

// Do this part in parallel
printf("Hello, World!\n");

return 0;

}

Motivation — OpenMP

All OpenMP directives begin: #pragma

int main() {
omp set num threads(4);

// Do this part in parallel
#pragma omp parallel

{ w
printf("Hello, World!\n");

}

return 0;

OpenMP parallel region construct

* Block of code to be executed by multiple threads in
parallel

« Each thread executes the same code redundantly
(SPMD)

« Work within work-sharing constructs is distributed among the
threads in a team

« Example with C/C++ syntax
#pragma omp parallel [clause [clause | ...] new-line
structured-block

» clause can include the following:
private (list)
shared (list)

« Example: OpenMP default is shared variables
To make private, need to declare with pragma:

fprragma omp parallel private (x)

OpenMP Programming Model - Review

Fork - Join Model:

Threa hread O
—

{ parallel region } { parallel region }

Sequentia| ——

master

code thread

« OpenMP programs begin as single process (master thread) and
executes sequentially until the first parallel region construct is

encountered
« FORK: Master thread then creates a team of parallel threads
« Statements in program that are enclosed by the parallel region construct are
executed in parallel among the various threads
« JOIN: When the team threads complete the statements in the parallel region
construct, they synchronize and terminate, leaving only the master thread

parallel Pragma and Scope — More Examples

#fpragma omp parallel num threads (2)
{

x=1;

v=1+x;

}
X=1; x=1;
y=1+x; y=1+x;

X and y are shared variables. There is arisk of data race

#fpragma omp parallel

{

x=1;

y=1+x%;

J

Assume number of threads=2

Thread O Thread 1
X=1; x=1;
y=1+x; y=1+x;

X and y are shared variables. There is a risk of data race

#fpragma omp parallel num threads (2)

{
x=1; y=1+x;

X=1; x=1;
y=x+1; y=x+1;

X and y are shared variables. There is arisk of data race

Divide for-loop for parallel sections

for (int 1=0; 1<8; 1i++) x[1]=0; //run on 4 threads

- =

#fpragma omp parallel
{ [l Assume number of threads=4
int numt=omp get num thread();
int id = omp get thread num(); //id=0, 1, 2, or 3
for (int i=id; 1<8; 1 +=numt)

x[1]1=0;
}

Thread 0 Thread 1 Thread 2 Thread 3
Id=0; Id=1; Id=2; Id=3;
x[0]=0; x[1]1=0; x[2]=0; x[3]1=0;
X[4]1=0; X[5]1=0; X[6]=0; X[71=0;

10

Use pragma parallel for

1<8; 1i++4)

- =

for (int 1=0; x[1]=0;

#pragma omp parallel for

{

System divides loop 1terations to threads

for

(1nt 1=0;

1<8;

x[1]=0;

I4d=0;
x[0]=0;
X[41=0;

Id=1;
x[1]=0;
X[5]1=0;

i44)

Id=2;
x[2]=0;
X[6]1=0;

Id=3;
x[3]1=0;
X[7]1=0;

11

OpenMP Data Parallel Construct: Parallel Loop

« Compiler calculates loop bounds for each thread directly
from serial source (computation decomposition)

« Compiler also manages data partitioning
« Synchronization also automatic (barrier)

Serial Program: Parallel Program:

void main() void main()

{ {
double Res[1000]; double Res[1000];

#pragma omp parallel for
for(int i=0;i<1000;i++) { for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]); do_huge_comp({Res[i]);

}]

} }

_Programming Model — Parallel Loops

» Requirement for parallel loops

* No data dependencies
(reads/write or write/write
pairs) between iterations!

» Preprocessor calculates loop
bounds and divide iterations
among parallel threads

#pragma omp parallel for

for(i=0; i < 25; i++) l
{

printf (“Foo”) ;

13

Example

for (i=0; i<max; i++) zero[i] = O;

 Breaks for loop into chunks, and allocate each to a
separate thread

« e.g. Ifmax =100 with 2 threads:
assign 0-49 to thread 0, and 50-99 to thread 1

* Must have relatively simple “shape” for an OpenMP-aware
compiler to be able to parallelize it

* Necessary for the run-time system to be able to determine how
many of the loop iterations to assign to each thread

* No premature exits from the loop allowed «<— Ingeneral,
don’t jump
outside of

any praggma
block

- i.e.No break, return, ex1it, goto statements

#fpragma omp parallel

This is the
{ e//,////,///’//’(nﬂy(ﬁrecﬂve
#pragma omp for in the parallel
for (i=0;i<max;i++) {) section

J

can be shortened to:
#pragma omp parallel for

for (1=0; 1<max;1++) { .. }

e Also works for sections

15

Example: Calculating 1

Numerical Iintegration
Mathematically, we know that:

1

I 4.0
(14x2) dx=T
0

We can approximate the
integral as a sum of
rectangles:

G
X
+

=

S

)
I

L

T

N
2 FoAX ™ T
i=0

Where each rectangle has
width Ax and height F(x) at
the middle of interval i.

Sequential Calculation of Tin C

#include <stdio.h> /* Serial Code */
static long num steps = 100000;
double step;
void main () {
int i;
double x, pi, sum = 0.0;
step = 1.0/ (double)num steps;
for (1 = 1; i <= num steps; i++) {
x = (1 - 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = sum / num steps;
printf ("pi = %$6.12f\n", pi);

17

Parallel OpenMP Version (1)

#include <omp.h>
#define NUM THREADS 4
static long num steps = 100000; double step;

void main () {
int 1i; double x, pi, sum[NUM THREADS] ;
step = 1.0/ (double) num steps;
#pragma omp parallel private (i, x)
{
int id = omp get thread num();
for (i=id, sum[id]=0.0; i< num steps; i=i+NUM THREADS)
{
x = (14+0.5) *step;
sum[id] += 4.0/ (1.0+x*x) ;
}
}
for (i=1; i<NUM THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num steps
printf ("pi = %6.12f\n", pi);

18

OpenMP Reduction

double avg, sum=0.0, AIMAX]; int i;

#pragma omp parallel for private (sum) [Sum+= A[OJ |
for (i=0; 1 <= MAX ; I++)
sum += A[i]; Sum+ A[

avg = sum/MAX; // bug Sum+—

» Problem is that we really want sum over all threads! | Sum+—A

» Reduction: specifies that 1 or more variables that are
private to each thread are subject of reduction operation at
end of parallel region:
reduction(operation:var) where

« Operation: operator to perform on the variables (var) at the end of the
parallel region

» Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i=0; 1 <= MAX; i++)
sum += A[i]; |

avg = sum/MAX; (Sum+=A[0]] l [Sum+2A[2]]l
[Sum+=A[1]] [Sum+=A[3].

OpenMp: Parallel Loops with Reductions

« OpenMP supports reduce operation
sum = 0;

#pragma omp parallel for reduction(+:sum)
for (i=0; 1< 100; i++) {

sum += array[i];

}

* Reduce ops and init() values (C and C++):
+ 0 bitwise & ~0 logical & 1

- 0 bitwise | O logical | O

* 1 bitwise » 0O

Calculating 1 Version (1) - review

#include <omp.h>
#define NUM THREADS 4
static long num steps = 100000; double step;

void main () {
int 1i; double x, pi, sum[NUM THREADS] ;
step = 1.0/ (double) num steps;
#pragma omp parallel private (i, x)
{
int id = omp get thread num();
for (i=id, sum[id]=0.0; i< num steps; i=i+NUM THREADS)
{
x = (14+0.5) *step;
sum[id] += 4.0/ (1.0+x*x) ;
}
}
for (i=1; i<NUM THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num steps
printf ("pi = %6.12f\n", pi);

21

Version 2: parallel for, reduction
$ifeluge Zomp. b5

#include <stdio.h>
/static long num steps = 100000;
double step;
void main ()
{ int 1i; double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;
#pragma omp parallel for private(x) reduction (+:sum)
for (i=1l; i<= num steps; i++) {
x = (1i-0.5) *step;
sum = sum + 4.0/ (1.0+x*x) ;
}
pi = sum / num steps;
printf ("pi = %6.8f\n", pi);
}

22

Loop Scheduling in Parallel £for pragma

#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

 Master thread creates additional threads, each
with a separate execution context l
master

* All variables declared outside for loop are

shared by default, except for loop index which is
private per thread (Why?)

* Implicit “barrier” synchronization at end of for %

loop
.. : : : Illlﬁlﬁﬂll
* Divide index regions sequentially per thread
* Thread 0 gets O, 1, ..., (max/n)-1; lmasfer
* Thread 1 gets max/n, max/n+1, ..., 2*(max/n)-1

* Why?

23

Impact of Scheduling Decision

* Load balance
« Same work in each iteration?
» Processors working at same speed?

« Scheduling overhead

« Static decisions are cheap because they require no run-time
coordination

« Dynamic decisions have overhead that is impacted by
complexity and frequency of decisions
 Data locality
 Particularly within cache lines for small chunk sizes
 Also impacts data reuse on same processor

OpenMP environment variables

OMP_NUM_THREADS
= sets the number of threads to use during execution

= when dynamic adjustment of the number of threads is enabled, the
value of this environment variable is the maximum number of
threads to use

* For example,
setenv OMP_NUM_THREADS 16 [csh, tcsh]
export OMP_NUM_THREADS=16 [sh, ksh, bash]
OMP_SCHEDULE

= applies only to do/for and parallel do/for directives that have the
schedule type RUNTIME

» sets schedule type and chunk size for all such loops

» For example,
setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

Programming Model — Loop Scheduling

 schedule clause determines how loop iterations are

divided among the thread team
 static ([chunk]) divides iterations statically between
threads

« Each thread receives [chunkK] iterations, rounding as necessary to
account for all iterations

« Default [chunk] iSceil(# iterations / # threads)
« dynamic ([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread
finishes
 Forms a logical work queue, consisting of all loop iterations
 Default [chunk] is 1
* guided ([chunk]) allocates dynamically, but [chunk] IS
exponentially reduced with each allocation

26

Loop scheduling options

dynamic(3) guided{1)

static

(2)

BOOOO00O080O0000808

B [s o

I | | | | | |

Programming Model — Data Sharing

» Parallel programs often employ // shared, globals
two types of data ’

e Shared data, visible to all
threads, similarly named

 Private data, visible to a single
thread (often stack-allocated)

int bigdata[1024];

void* foo(void* bar) ({

iritptidate, stack

 PThreads:
» Global-scoped variables are int tid;
shared #pragma omp parallel \
« Stack-allocated variables are ,
orivate /shaaddulabigdagees \
prhease*(tid)
 OpenMP:
. shared variables are shared }
« private variables are private /* Calc. here */

28

Programming Model - Synchronization

* OpenMP Synchronization

« OpenMP Critical Sections
« Named or unnamed
* No explicit locks / mutexes

#pragma omp critical
{
/* Critical code here */

}

 Barrier directives .
#pragma omp barrier

 Explicit Lock functions omp set lock(lock 1);
* When all else fails — may /* Code goes here */
require flush directive omp unset lock(lock 1);

* Single-thread regions within #pragma omp single
parallel regions {
. . %* *
- master, single directives /* Only executed once */

}

29

Omp critical vs. atomic

Int sum=0
#pragma omp parallel for
for(int j=1; | <n; j++){

Int X = J*J;
#pragma omp critical
{

sum=sum-+x;// One thread enters the critical section at a time.

}

* May also use
#pragma omp atomic

X += exper

Faster, but can support only limited arithmetic operation such as
++, -, +=, -, %= /=, &=, |=

30

OpenMP Timing

 Elapsed wall clock time:
double omp get wtime (void);

« Returns elapsed wall clock time in seconds

* Time Is measured per thread, no guarantee can be made that two
distinct threads measure the same time

* Time is measured from “some time in the past,” so subtract
results of two callsto omp get wtime togetelapsed time

31

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

Tl

1 2 5 7 1x5+2%x6 1x7+2%8 17 23
*x — —

3 4 6 8 3¥x0+4x6 3%x7+4x%x8 30 53

for 2.=1ton do

T; :

T; :

for j=1tondo
sum = 0;
for Kk =1tondo
sum = sum + ali, k| x bk, j];
endfor
cli, j] = sum;

endfor

endfor

Read row A; and mat

Write row Cj

(v.) (x.)

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

T2

1 2 5 7 1*5+2%x6 1x7+2%8 17 23
% = —

3 4 6 8 3x0+4x6 3x7+4%8 39 53

for 2.=1ton do

T; -

T; :

for j=1tondo
sum = 0;
for Kk =1tondo
sum = sum + ali, k| x bk, j];
endfor
cli, j] = sum;

endfor

endfor

Read row A; and mat

Write row Cj

() (1.)s

Matrix Multiply in OpenMP

// CIM][N] = A[M][P] X B[P][N]
start time = omp get wtime () ;

#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){ < Outer loop spread across

for (94=0; IJ<N; Jj++){ Nthl‘eads;
J=0 I Inner loops inside a single
tmp = 0.0 thread

for(k=0; k<P; k++) {
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/

tmp += A[i][k] * B[k][j]; B _
} by [bs s
C[i][j] = tmp; b, |bs3
} - |] =
} dy |8y O
run time = omp get wtime() - Start_timii a..|a:;
a a”—o
| 34

OpenMP Summary

« OpenMP is a compiler-based technique to create
concurrent code from (mostly) serial code

« OpenMP can enable (easy) parallelization of loop-based
code with fork-join parallelism
e pragma omp parallel
e pragma omp parallel for
e pragma omp parallel private (i, x)
e pragma omp atomic
e pragma omp critical
« #pragma omp for reduction(+ : sum)

* OpenMP performs comparably to manually-coded
threading
* Not a silver bullet for all applications

35

