
Shared Memory Programming

with Pthreads

T. Yang. UCSB CS240A. Spring 2016

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• Shared memory programming: Overview

• POSIX pthreads

• Critical section & thread synchronization.

 Mutexes.

 Producer-consumer synchronization and
semaphores.

 Barriers and condition variables.

 Read-write locks.

• Thread safety.

#
 C

h
a
p
te

r S
u
b
title

Shared Memory Architecture

Copyright © 2010, Elsevier

Inc. All rights Reserved

Processes and Threads

• A process is an instance of a running (or

suspended) program.

• Threads are analogous to a “light-weight” process.

• In a shared memory program a single process may

have multiple threads of control.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Logical View of Threads

• Threads are created within a process

P1

sh sh sh

foo

T1

Process hierarchy A process

T2
T4

T5 T3

shared code, data

and kernel context

Concurrent Thread Execution

• Two threads run concurrently if their logical flows

overlap in time

• Otherwise, they are sequential (we’ll see that

processes have a similar rule)

• Examples:

 Concurrent:

A & B, A&C

 Sequential:

B & C

Time

Thread A Thread B Thread C

Execution Flow on one-core or multi-core

systems

Concurrent execution on a single core system

Parallel execution on a multi-core system

Benefits of multi-threading

• Responsiveness

• Resource Sharing

 Shared memory

• Economy

• Scalability

 Explore multi-core CPUs

9

Thread Programming with Shared Memory

• Program is a collection of threads of control.

 Can be created dynamically

• Each thread has a set of private variables, e.g., local stack

variables

• Also a set of shared variables, e.g., static variables, shared

common blocks, or global heap.

 Threads communicate implicitly by writing and reading

shared variables.

 Threads coordinate by synchronizing on shared

variables

Pn P1 P0

s
s = ...

Shared memory

i: 2 i: 5 Private

memory

i: 8

10

Shared Memory Programming

Several Thread Libraries/systems

• Pthreads is the POSIX Standard

 Relatively low level

 Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming

 Support for scientific programming on shared memory

 http://www.openMP.org

• Java Threads

• TBB: Thread Building Blocks

 Intel

• CILK: Language of the C “ilk”

 Lightweight threads embedded into C

http://www.openMP.org

Creation of Unix processes vs. Pthreads

C function for starting a thread

Copyright © 2010, Elsevier

Inc. All rights Reserved

pthread.h

pthread_t

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

One object for
each thread.

A closer look (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

We won’t be using, so we just pass NULL.

Allocate before calling.

A closer look (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

The function that the thread is to run.

Pointer to the argument that should

be passed to the function start_routine.

Function started by pthread_create

• Prototype:

 void* thread_function (void* args_p) ;

• Void* can be cast to any pointer type in C.

• So args_p can point to a list containing one or

more values needed by thread_function.

• Similarly, the return value of thread_function can

point to a list of one or more values.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Wait for Completion of Threads

pthread_join(pthread_t *thread, void

**result);

 Wait for specified thread to finish. Place exit value

into *result.

• We call the function pthread_join once for each

thread.

• A single call to pthread_join will wait for the thread

associated with the pthread_t object to complete.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

Example of Pthreads with join

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Hello from thread %d\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

 pthread_join(thread0, NULL);

 pthread_join(thread1, NULL);

}

Some More Pthread Functions

• pthread_yield();

 Informs the scheduler that the thread is willing to yield

• pthread_exit(void *value);

 Exit thread and pass value to joining thread (if exists)

Others:

• pthread_t me; me = pthread_self();

 Allows a pthread to obtain its own identifier pthread_t

thread;

• Synchronizing access to shared variables

 pthread_mutex_init, pthread_mutex_[un]lock

 pthread_cond_init, pthread_cond_[timed]wait

Compiling a Pthread program

Copyright © 2010, Elsevier

Inc. All rights Reserved

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

Running a Pthreads program

Copyright © 2010, Elsevier

Inc. All rights Reserved

. / pth_hello

. / pth_hello

Hello from thread 0

Hello from thread 1

Hello from thread 1

Hello from thread 0

Difference between Single and Multithreaded

Processes
Shared memory access for code/data

Separate control flow -> separate stack/registers

CRITICAL SECTIONS

Copyright © 2010, Elsevier

Inc. All rights Reserved

Data Race Example

Thread 0

 for i = 0, n/2-1

 s = s + f(A[i])

Thread 1

 for i = n/2, n-1

 s = s + f(A[i])

static int s = 0;

• Also called critical section problem.

• A race condition or data race occurs when:

- two processors (or two threads) access the same variable,

and at least one does a write.

- The accesses are concurrent (not synchronized) so they

could happen simultaneously

Synchronization Solutions

1. Busy waiting

2. Mutex (lock)

3. Semaphore

4. Conditional Variables

Example of Busy Waiting

Thread 0

 int temp, my_rank

 for i = 0, n/2-1

 temp0=f(A[i])

 while flag!=my_rank;

 s = s + temp0

 flag= (flag+1) %2

Thread 1

 int temp, my_rank

 for i = n/2, n-1

 temp=f(A[i])

 while flag!=my_rank;

 s = s + temp

 flag= (flag+1) %2

static int s = 0;

static int flag=0

• A thread repeatedly tests a condition, but, effectively, does no

useful work until the condition has the appropriate value.

•Weakness: Waste CPU resource. Sometime not safe with

compiler optimization.

Mutexes (Locks)

• Code structure

• Mutex (mutual exclusion) is a special type of variable

used to restrict access to a critical section to a single

thread at a time.

• guarantee that one thread “excludes” all other threads

while it executes the critical section.

• When A thread waits on a mutex/lock,

CPU resource can be used by others.

• Only thread that has acquired the lock

can release this lock

Acquire mutex lock

Critical section

Unlock/Release mutex

Execution example with 2 threads

Acquire mutex lock

Critical section

Unlock/Release mutex

Acquire mutex lock

Critical section

Unlock/Release mutex

Thread 1 Thread 2

Mutexes in Pthreads

• A special type for mutexes: pthread_mutex_t.

• To gain access to a critical section, call

• To release

• When finishing use of a mutex, call

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Semaphore: Generalization from mutex

locks

• Semaphore S – integer variable

• Can only be accessed /modified via two

 (atomic) operations with the following

 semantics:

 wait (S) { //also called P()

 while S <= 0 wait in a queue;

 S--;

 }

 post(S) { //also called V()

 S++;

 Wake up a thread that waits in the queue.

 }

Why Semaphores?

• Examples of complex synchronization

 Allow a resource to be shared among multiple

threads.

– Mutex: no more than 1 thread for one protected region.

 Allow a thread waiting for a condition after a signal

– E.g. Control the access order of threads entering the

critical section.

– For mutexes, the order is left to chance and the system.

Synchronization Functionality/weakness

Busy waiting Spinning for a condition. Waste

resource. Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Handle more complex signal-based

synchronization

Syntax of Pthread semaphore functions

Copyright © 2010, Elsevier

Inc. All rights Reserved

Semaphores are not part of Pthreads;

you need to add this.

Producer-consumer

Synchronization and

Semaphores

Copyright © 2010, Elsevier

Inc. All rights Reserved

Producer-Consumer Example

• Thread x produces a message for Thread x+1.

 Last thread produces a message for thread 0.

• Each thread prints a message sent from its source.

• Will there be null messages printed?

 A consumer thread prints its source message before

this message is produced.

 How to avoid that?

T0 T1 T2

Flag-based Synchronization with 3 threads

Write a msg to #1

Set msg[1]

Thread 0

If msg[0] is ready

Print msg[0]

Write a msg to #2

Set msg[2]

Thread 1

If msg[1] is ready

Print msg[1]

Write a msg to #0

Set msg[0]

Thread 2

If msg[2] is ready

Print msg[2]

To make sure a message is received/printed, use busy waiting.

First attempt at sending messages using pthreads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Produce a message for a destination

thread

Consume a message

Semaphore Synchronization with 3 threads

Write a msg to #1

Set msg[1]

Post(semp[1])

Thread 0

Wait(semp[0])

Print msg[0]

Write a msg to #2

Set msg[2]

Post(semp[2])

Thread 1

Wait(semp[1])

Print msg[1]

Write a msg to #0

Set msg[0]

Post(semp[0])

Thread 2

Wait(semp[2])

Print msg[2]

Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %ld", dest, my_rank);

messages[dest] = my_msg;

sem_post(&semaphores[dest]);

 /* signal the dest thread*/

sem_wait(&semaphores[my_rank]);

 /* Wait until the source message is created */

printf("Thread %ld > %s\n", my_rank,

messages[my_rank]);

READERS-WRITERS PROBLEM

Copyright © 2010, Elsevier

Inc. All rights Reserved

Synchronization Example for Readers-Writers Problem

• A data set is shared among a number of concurrent

threads.

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

• Requirement:

 allow multiple readers to read at the same time.

 Only one writer can access the shared data at the same

time.

• Reader/writer access permission table:

Reader Writer

Reader OK No

Writer NO No

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader ? ?

Writer ? ?

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader no no

Writer no no

2nd try using a lock + readcount

• writer
 do {

 mutex_lock(w);// Use writer mutex lock

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 readcount++; // add a reader counter.

 if(readcount==1) mutex_lock(w);

 // reading is performed

 readcount--;

 if(readcount==0) mutex_unlock(w);

 } while (TRUE);

Readers-Writers Problem with semaphone

• Shared Data

 Data set

 Lock mutex (to protect readcount)

 Semaphore wrt initialized to 1 (to

synchronize between

readers/writers)

 Integer readcount initialized to 0

Readers-Writers Problem

• A writer

 do {

 sem_wait(wrt) ; //semaphore wrt

 // writing is performed

 sem_post(wrt) ; //

 } while (TRUE);

Readers-Writers Problem (Cont.)

• Reader

 do {

 mutex_lock(mutex);

 readcount ++ ;

 if (readcount == 1)

 sem_wait(wrt); //check if anybody is writing

 mutex_unlock(mutex)

 // reading is performed

 mutex_lock(mutex);

 readcount - - ;

 if (readcount == 0)

 sem_post(wrt) ; //writing is allowed now

 nlock(mutex) ;

 } while (TRUE);

Barriers

• Synchronizing the threads to make sure that they all

are at the same point in a program is called a barrier.

• No thread can cross the barrier until all the threads

have reached it.

• Availability:

 No barrier provided by

Pthreads library and needs

a custom implementation

 Barrier is implicit in

 OpenMP

and available in MPI.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Condition Variables

• Why?

• More programming primitives to simplify code for

synchronization of threads

Synchronization Functionality

Busy waiting Spinning for a condition. Waste resource.

Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Signal-based synchronization. Allow

sharing (not wait unless semaphore=0)

Barrier Rendezvous-based synchronization

Condition

variables

More complex synchronization: Let

threads wait until a user-defined

condition becomes true

Synchronization Primitive: Condition Variables

• Used together with a lock

• One can specify more general waiting
condition compared to semaphores.

• A thread is blocked when condition is no
true:

 placed in a waiting queue, yielding
CPU resource to somebody else.

 Wake up until receiving a signal

Pthread synchronization: Condition

variables
int status; pthread_condition_t cond;

const pthread_condattr_t attr;

pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);

status = pthread_cond_destroy(&cond);

status = pthread_cond_wait(&cond,&mutex);

 -wait in a queue until somebody wakes up. Then the mutex is

reacquired.

status = pthread_cond_signal(&cond);

 - wake up one waiting thread.

status = pthread_cond_broadcast(&cond);

 - wake up all waiting threads in that condition

 Thread 1: //try to get into critical section and

 wait for the condition

Mutex_lock(mutex);

 While (condition is not satisfied)

 Cond_Wait(mutex, cond);

 Critical Section;

Mutex_unlock(mutex)

 Thread 2: // Try to create the condition.

Mutex_lock(mutex);

When condition can satisfy, Signal(cond);

Mutex_unlock(mutex);

How to Use Condition Variables: Typical

Flow

Producer deposits data in a buffer for others to consume

Condition variables for in producer-

consumer problem with unbounded buffer

First version for consumer-producer problem

with unbounded buffer

• int avail=0; // # of data items available for consumption

• Consumer thread:

 while (avail <=0); //wait

 Consume next item; avail = avail-1;

 Producer thread:

 Produce next item; avail = avail+1;

 //notify an item is available

Condition Variables for consumer-producer

problem with unbounded buffer

• int avail=0; // # of data items available for consumption

• Pthread mutex m and condition cond;

• Consumer thread:

 multex_lock(&m)

 while (avail <=0) Cond_Wait(&cond, &m);

 Consume next item; avail = avail-1;

 mutex_unlock(&mutex)

 Producer thread:

 mutex_lock(&m);

 Produce next item; availl = avail+1;

 Cond_signal(&cond); //notify an item is available

 mutex_unlock(&m);

When to use condition broadcast?

• When waking up one thread to run
is not sufficient.

• Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.

Running trace of malloc()/free()

• Initially 10 bytes are free.

• m() stands for malloc(). f() for free()

Thread 1:

m(10) – succ

f(10) –broadcast

m(7) – wait

Resume m(7)-wait

Thread 2:

m(5) – wait

Resume m(5)-succ

f(5) –broadcast

Thread 3:

m(5) – wait

Resume m(5)-succ

m(3) –wait

Resume m(3)-succ

Time

Issues with Threads: False Sharing,

Deadlocks, Thread-safety

Copyright © 2010, Elsevier

Inc. All rights Reserved

Problem: False Sharing

• Occurs when two or more processors/cores access

different data in same cache line, and at least one

of them writes.

 Leads to ping-pong effect.

• Let’s assume we parallelize code with p=2:

for(i=0; i<n; i++)

 a[i] = b[i];

 Each array element takes 8 bytes

 Cache line has 64 bytes (8 numbers)

False Sharing: Example (2 of 3)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line

Written by CPU 0

Written by CPU 1

Execute this program in two processors

for(i=0; i<n; i++)

 a[i] = b[i];

False Sharing: Example

CPU0

CPU1

a[0]

a[1]

a[2] a[4]

a[3] a[5]

... inv data

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line
Written by CPU 0

Written by CPU 1

Two CPUs execute:

for(i=0; i<n; i++)

 a[i] = b[i];

Matrix-Vector Multiplication with

Pthreads

Parallel programming book by Pacheco book P.159-162

Sequential code

Block Mapping for Matrix-Vector Multiplication

• Task partitioning

 For (i=0; i<m; i=i+1)

Task graph

Mapping to

threads

Task Si for Row i

y[i]=0;

For (j=0; j<n; j=j+1)

 y[i]=y[i] +a[i][j]*x[j]

S0 S1 Sm
...

S0 S1
...

Thread 0

S2 S3

Thread 1

Using 3 Pthreads for 6 Rows: 2 row per

thread

Code for Si

S2, S3

S4,S5

S0, S1

Code for S0

Pthread code for thread with ID rank

Copyright © 2010, Elsevier

Inc. All rights Reserved

Task Si

i-th thread calls Pth_mat_vect(&i)

m is # of rows in this matrix A.

 n is # of columns in this matrix A.

local_m is # of rows handled by

this thread.

Impact of false sharing on performance of

matrix-vector multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

(times are in seconds)

Why is performance of

8x8,000,000 matrix bad?

How to fix that?

Deadlock and Starvation

• Deadlock – two or more threads are waiting
indefinitely for an event that can be only caused by
one of these waiting threads

• Starvation – indefinite blocking (in a waiting queue
forever).
 Let S and Q be two mutex locks:

 P0 P1

 Lock(S); Lock(Q);

 Lock(Q); Lock(S);

 . .

 . .

 . .

 Unlock(Q); Unlock(S);

 Unlock(S); Unlock(Q);

Deadlock Avoidance

• Order the locks and always acquire the locks in
that order.

• Eliminate circular waiting

 :

 P0 P1

 Lock(S); Lock(S);

 Lock(Q); Lock(Q);

 . .

 . .

 . .

 Unlock(Q); Unlock(Q);

 Unlock(S); Unlock(S);

Thread-Safety

• A block of code is thread-safe if it can be

simultaneously executed by multiple threads without

causing problems.

• When you program your own functions, you know if

they are safe to be called by multiple threads or not.

• You may forget to check if system library functions

used are thread-safe.

 Unsafe function: strtok()from C string.h library

 Other example.

– The random number generator random in stdlib.h.

– The time conversion function localtime in time.h.

Concluding Remarks

• A thread in shared-memory programming is analogous

to a process in distributed memory programming.

 However, a thread is often lighter-weight than a full-

fledged process.

• When multiple threads access a shared resource

without controling, it may result in an error: we have a

race condition.

 A critical section is a block of code that updates a

shared resource that can only be updated by one

thread at a time

 Mutex, semaphore, condition variables

• Issues: false sharing, deadlock, thread safety

 Copyright © 2010, Elsevier

Inc. All rights Reserved

