.

Shared Memory Programming
with Pthreads

T. Yang. UCSB CS240A. Spring 2016



Outline

Shared memory programming: Overview
POSIX pthreads

Critical section & thread synchronization.
= Mutexes.

* Producer-consumer synchronization and
semaphores.

= Barriers and condition variables.
= Read-write locks.
Thread safety.

Copyright © 2010, Elsevier
Inc. All rights Reserved

apgns JaydeyD #



Shared Memory Architecture

CPU CPU CPU CPU
M Fi I
\ ) / \
Interconnect
/]
i
Memory

Copyright © 2010, Elsevier
Inc. All rights Reserved



Processes and Threads

« A process is an instance of arunning (or
suspended) program.

 Threads are analogous to a “light-weight” process.

* In ashared memory program a single process may
have multiple threads of control.

Copyright © 2010, Elsevier
Inc. All rights Reserved



' Logical View of Threads

 Threads are created within a process

A process

~«| shared code, dfta
ext

Process hierarchy

@@




' Concurrent Thread Execution

 Two threads run concurrently if their logical flows
overlap in time

« Otherwise, they are sequential (we’ll see that
processes have a similar rule)

* Examples: Thread A Thread B Thread C
= Concurrent: | |
A & B, A&C I
o Se I - e e
guential Time| T | ______
B&C |



Execution Flow on one-core or multi-core
systems

Concurrent execution on a single core system

single core T4 To T3 Ty T4 To Ts T i

time

Parallel execution on a multi-core system

core 1 T4 Ta Ty Ta T4

core 2 To Ty Ts Ty Ts




' Benefits of multi-threading

* Responsiveness Rl
read # Thread 43
 Resource Sharing é § @
= Shared memory % E
* Economy v

« Scalability
= Explore multi-core CPUs




hread Programming with Shared Memory

 Program is a collection of threads of control.

= Can be created dynamically

« Each thread has a set of private variables, e.g., local stack
variables

 Also aset of shared variables, e.g., static variables, shared
common blocks, or global heap.

= Threads communicate implicitly by writing and reading
shared variables.

= Threads coordinate by synchronizing on shared
variables

Shared memory
S = ...
\

Private \ 18

ITIVIITIVUL )’ \ f o

_E\

&
)




’ Shared Memory Programming

Several Thread Libraries/systems
* Pthreads is the POSIX Standard
= Relatively low level
= Portable but possibly slow; relatively heavyweight
OpenMP standard for application level programming
= Support for scientific programming on shared memory
= http://www.openMP.org
Java Threads
TBB: Thread Building Blocks
= Intel
CILK: Language of the C “ilk”
= Lightweight threads embedded into C

10


http://www.openMP.org

' Creation of Unix processes vs. Pthreads

process thread

fork pthread_create

TS T

L7 returnfexit L7 return

- -
- -
F F
F

“waitpid ‘bthread join
Y Y




' C function for starting a thread

pthread.h owne object for

\ each thread,
pthread t

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in */,
void* (*start_routine ) (void ) /*in*/,
void* arg p/*in*);

Copyright © 2010, Elsevier
Inc. All rights Reserved



' A closer look (1)

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in*/,
void* (*start_routine ) (void ) /* in */,
void* arg p/*in*);

We won't be using, so we just pass NULL.

Allocate before calling.

Copyright © 2010, Elsevier
Inc. All rights Reserved



A closer look (2)

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in*/,
void* (*start_routine ) (void ) /* in */,

i void* arg p/*in*);

Pointer to the argument that should
be passed to the function start_routine.

The function that the thread is to run.

Copyright © 2010, Elsevier
Inc. All rights Reserved



' Function started by pthread create

* Prototype:
void* thread_ function ( void* args p) ;

« Void* can be cast to any pointer type in C.

* SO args_p can point to a list containing one or
more values needed by thread_function.

« Similarly, the return value of thread_function can
point to a list of one or more values.

Copyright © 2010, Elsevier
Inc. All rights Reserved



Wait for Completion of Threads

pthread join(pthread t *thread, void
**result) ;

= Wait for specified thread to finish. Place exit value
Into *result.

« We call the function pthread join once for each
thread.

A single call to pthread join will wait for the thread
associated with the pthread t object to complete.

Copyright © 2010, Elsevier
Inc. All rights Reserved



Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){
printf(“Thread%d: Hello World!\n", id);

}

void main (){
pthread t threadO, threadl;

thread

pthread_create
pthread_create \\

Y

pthread_create(&threadO, NULL, PrintHello, (void *) 0);
pthread_create(&threadl, NULL, PrintHello, (void *) 1);

}



Example of Pthreads with join

thread -

#include <pthread.h> pthread create
#include <stdio.h> \
void *PrintHello(void * id){ e e

printf("Hello from thread %d\n", id);
}

e

void main (){

pthread_t threadO, thread1; '

pthread_create(&threadO, NULL, PrintHello, (void *) 0);
pthread_create(&threadl, NULL, PrintHello, (void *) 1);
pthread_join(threadO, NULL);
pthread_join(threadl, NULL);



Some More Pthread Functions

 pthread yield();

= Informs the scheduler that the thread is willing to yield
« pthread exit(void *value);

= Exit thread and pass value to joining thread (if exists)
Others:
« pthread t me; me = pthread self();

= Allows a pthread to obtain its own identifier pthread t
thread,

 Synchronizing access to shared variables
" pthread mutex 1nit, pthread mutex [un]lock

" pthread cond 1nit, pthread cond [timed]walt



' Compiling a Pthread program

gcc —g —Wall —o pth_hello pth_hello . ¢ —Ipthread

link In the Pthreads library

Copyright © 2010, Elsevier
Inc. All rights Reserved



Running a Pthreads program

./ pth_hello

Hello from thread 1
Hello from thread O

./ pth_hello

Hello from thread O
Hello from thread 1

Copyright © 2010, Elsevier
Inc. All rights Reserved



Difference between Single and Multithreaded
Processes

Shared memory access for code/data
Separate control flow -> separate stack/registers

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —> <«— thread

single-threaded process

multithreaded process




CRITICAL SECTIONS

Copyright © 2010, Elsevier
Inc. All rights Reserved



’ Data Race Example

static int s = O;
Thread 0 Thread 1
for1=0, n/2-1 for1=n/2, n-1
s =s + f(A[1]) s =s + f(A[1])

* Also called critical section problem.
* A race condition or data race occurs when:

- two processors (or two threads) access the same variable,
and at least one does a write.

- The accesses are concurrent (not synchronized) so they
could happen simultaneously



’ Synchronization Solutions

1. Busy waiting
2. Mutex (lock)
3. Semaphore

4. Conditional Variables



Example of Busy Waiting

static int s = 0;
static int flag=0

Thread 0
int temp, my rank
for1=0, n/2-1
tempO0=1{(A[1])
while flag!=my rank;
s =s + temp(
flag= (flag+1) %2

Thread 1
int temp, my rank
for1i=n/2, n-1
temp=£t(A[1])
while flag!=my rank;
S =S + temp
flag= (flag+1) %2

* A thread repeatedly tests a condition, but, effectively, does no
useful work until the condition has the appropriate value.
*Weakness: Waste CPU resource. Sometime not safe with

compiler optimization.




Mutexes (Locks)

Acquire mutex lock

& . . ;
| Critical section

 Code structure
Unlock/Release mutex

« Mutex (mutual exclusion) is a special type of variable
used to restrict access to a critical section to a single
thread at a time.

« guarantee that one thread “excludes” all other threads
while it executes the critical section. — =

* When A thread waits on a mutex/lock, “-:‘7'
CPU resource can be used by others. é%
« Only thread that has acquired the lock %/

can release this lock

|  Protected Resource




' Execution example with 2 threads

Thread 1 Thread 2
H\‘ Acquire mutex lock I Acquire mutex lock
n

I/E] Critical section

Unlock/Release mutex

N

"M' Critical section

A4
M Unlock/Release mutex



Mutexes Iin Pthreads

A special type for mutexes: pthread mutex t.

int pthread_mutex_init(
pthread_mutex_t=* mutex_p /% out =/

const pthread_mutexattr_ts* attr_p /% in =/ )

« To gain access to a critical section, call
int pthread_mutex_lock(pthread_mutex_t* mutex_p /x in/out =/):.

e To release

int pthread_mutex_unlock(pthread_mutex_t+ mutex_p /% in/out =*/):

 When finishing use of a mutex, call
int pthread_mutex_destroy(pthread_mutex_t+* mutex_p /*x in/out =*/);

Copyright © 2010, Elsevier
Inc. All rights Reserved



lobal sum function that uses a mutex (1)

void+ Thread_sum(veids rank) |
long my_rank = (long) rank:
double factor:
long long 1i;
long long my n = n/thread count;
long long my first i = my_n=#my_rank:
long long my last i = my_first i + my_n;
double my _sum = 0.0;

if (my _first 1 % 2 == 0)
factor = 1.0;

else
factor = —1.0;

Copyright © 2010, Elsevier
Inc. All rights Reserved



lobal sum function that uses a mutex (2)

for (i = my_first_i; 1 < my_last_i; i++, factor = —factor) {
my_sum += factor/(2=1i+1);

}

pthread_mutex_lock(&mutex );

Sum += my_sum;
pthread_mutex_unlock(&mutex );

return NULL:
/% Thread_sum =/

Copyright © 2010, Elsevier
Inc. All rights Reserved



Semaphore: Generalization from mutex

— locks

Semaphore S — integer variable
Can only be accessed /modified via two
(atomic) operations with the following
semantics:
= walit (S) { //also called P()
while S <= 0 walt in a queue;
S--;

£G00uMB @) uoseas /1Sy (1euibuo @

}

= post(S){ /l/also called V()
S++;

Wake up a thread that waits in the queue.

}

WO ¥I0ISUOoET) WOy ajgeeny siybiy



Why Semaphores?

Synchronization Functionality/weakness

Busy waiting Spinning for a condition. Waste
resource. Not safe

Mutex lock Support code with simple mutual
exclusion

Semaphore Handle more complex signal-based

synchronization

« Examples of complex synchronization

= Allow a resource to be shared among multlple

threads.
— Mutex: no more than 1 thread for one protected region.

= Allow a thread waiting for a condition after a signal

— E.g. Control the access order of threads entering the
critical section.

— For mutexes, the order is left to chance and the system.



Syntax of Pthread semaphore functions

/ Semaphores are not part of Pthreads;

#include <semaphore.h> you need to add this.

int sem _init(

sem_t x* semaphore_p /x out =/,
int shared [ in  x/,
unsigned initial_val /[ in  x/);

int sem_destroy(sem_t+* semaphore_p /x in/out =/).
int sem_post(sem_tx* semaphore_p /% in/out =/);
int sem wait(sem t=* semaphore_p /x in/out =/):

Copyright © 2010, Elsevier
Inc. All rights Reserved



Producer-consumer
Synchronization and
Semaphores

Copyright © 2010, Elsevier
Inc. All rights Reserved



Producer-Consumer Example

®— @&

« Thread x produces a message for Thread x+1.

= Last thread produces a message for thread 0.
« Each thread prints a message sent from its source.
« Will there be null messages printed?

= A consumer thread prints its source message before
this message is produced.

= How to avoid that?




' Flag-based Synchronization with 3 threads

Thread 0

Thread 1 Thread 2
Write a msg to #1 I : ]
Write a msg to #2 Write a msg to #0
Set msg[1]
\ Set msg[2] Set msg[0]
If msg[0] 1s ready If msg[1] is ready | ™| If msg[2] is ready
N | Print msg[o] b Print msg[l] I} Print msg[Z] ‘

To make sure a message 1s received/printed, use busy waiting.



First attempt at sending messages using pthreads

messages has type char*x*. It’'s allocated in main. */

Each entry is set to NULL in main. */
void #*Send_msg(void* rank) {
long my_rank = (long) rank:
long dest = (my_rank + 1) % thread_count:
long source = (my_rank 4+ thread count — 1) % thread count:
chars my_msg = malloc( X

Produce a message for a destination
fello to 314 Lthread

sprintf(my_msg

messages|[dest]|] = my_msqg;
_ Consume a message
if (messages|[my_rank]| }= NULL)
printf("Thread %1d > %s\n". my_rank., messages|[my_rank]):
else
printf("Thread %$1d > No message from %1d\n"., my_rank. source):

return NULL:
/* Send_msg */

Copyright © 2010, Elsevier
Inc. All rights Reserved



' Semaphore Synchronization with 3 threads

Thread 0

Thread 1 Thread 2
Write a msg to #1 Write a msg to #2 | || Write a msg to #0
Set msg[1] Set ms
g[2] Set 0
Post(semp[l])\\ Post(semp[2])\\ sttl?ssegn[lp][O])
Wait(semp[0]) i : ™
| Print msg[0] L sl ) Wait(semp([2])

. NV
Print msg[1] Print msg[2]




' Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %Id", dest, my_rank);
messages|dest] = my _msg;

sem_post(&semaphores|[dest));
[* signal|the dest thread*/
sem_wait(&semaphores[my_rank]);
/* Wait until the source message Iis created */

printf("Thread %ld > %s\n", my_rank,
messages[my_rank]);



Copyright © 2010, Elsevier



Synchronization Example for Readers-Writers Problem

« A datasetis shared among a number of concurrent
threads.

= Readers — only read the data set; they do not perform any
updates

= Writers - can both read and write
 Requirement:
= allow multiple readers to read at the same time.
= Only one writer can access the shared data at the same

time.
 Reader/writer access permission table:
Reader Writer
Reader OK No

Writer NO NoO



Readers-Writers (First try with 1 mutex lock)

—swriter
do {
mutex_lock(w);
/[ writing is performed
mutex_unlock(w);
} while (TRUE);

e Reader Reader ? ?
do { Writer ? ?

mutex_lock(w);
/I reading is performed
mutex_unlock(w);

} while (TRUE);



Readers-Writers (First try with 1 mutex lock)

—swriter
do {
mutex_lock(w);
/[ writing is performed
mutex_unlock(w);
} while (TRUE);

e Reader Reader no no
do { Writer no no

mutex_lock(w);
/I reading is performed
mutex_unlock(w);

} while (TRUE);



2"d try using a lock + readcount

e Writer
do {
mutex_lock(w);// Use writer mutex lock
/[ writing is performed

mutex_unlock(w);
} while (TRUE);

« Reader

do {
readcount++; // add a reader counter.
if(readcount==1) mutex_lock(w);
/[ reading is performed
readcount--;
If(readcount==0) mutex_unlock(w);
} while (TRUE);



’ Readers-Writers Problem with semaphone

« Shared Data
= Data set
* Lock mutex (to protect readcount)

= Semaphore wrt initialized to 1 (to
synchronize between
readers/writers)

= Integer readcount initialized to O




’ Readers-Writers Problem

A writer
do {
sem_wailt(wrt) ; //[semaphore wrt

// writing Is performed

sem_post(wrt) ; //
} while (TRUE);



Readers-Writers Problem (Cont.)

Reader
do {
muteXx_lock(mutex);
readcount ++
If (readcount == 1)
sem_wait(wrt); /Icheck if anybody is writing
mutex_unlock(mutex)

// reading is performed

mutex_lock(mutex);
readcount - -
If (readcount == 0)
sem_post(wrt) ; //writing is allowed now
nlock(mutex) ;
} while (TRUE);



Barriers

e Synchronizing the threads to make sure that they all
are at the same point in a program is called a barrier.

* No thread can cross the barrier until all the threads

have reached it.
 Availability:
= No barrier provided by " "2
Pthreads library and needs
a custom implementation Barrer-3
= Barrier is implicit in wait

"

Barriar-3

OpenI\/IP i Barrier-3
and available in MPI. I I I




Condition Variables

¢ Why?

« More programming primitives to simplify code for
synchronization of threads

Synchronization
Busy waiting

Mutex lock

Semaphore

Barrier

Condition
variables

Functionality

Spinning for a condition. Waste resource.
Not safe

Support code with simple mutual
exclusion

Signal-based synchronization. Allow
sharing (not wait unless semaphore=0)

Rendezvous-based synchronization

More complex synchronization: Let
threads wait until a user-defined
condition becomes true



' Synchronization Primitive: Condition Variables

« Used together with a lock

* One can specify more general waiting
condition compared to semaphores.

» Athread Is blocked when condition is no
true:
= placed in a waliting queue, Yyielding
CPU resource to somebody else.

= Wake up until receiving a signal




Pthread synchronization: Condition

19hlec

int status;  pthread condition t cond;

const pthread condattr t attr;

pthread mutex mutex;

status = pthread cond 1nit(&cond,&attr);
status = pthread cond destroy(&cond);
status = pthread cond wait(&cond,&mutex);

-wait in a queue until somebody wakes up. Then the mutex is
reacquired.

status = pthread cond_signal(&cond);
- wake up one waiting thread.
status = pthread cond_broadcast(&cond);

- wake up all waiting threads in that condition



' How to Use Condition Variables: Typica

—1OW
= Thread 1: //try to get into critical section and
wait for the condition
Mutex_lock(mutex);
While (condition is not satisfied)
Cond_Wait(mutex, cond);
Critical Section;
Mutex unlock(mutex)

= Thread 2: // Try to create the condition.
Mutex_lock(mutex);
When condition can satisfy, Signal(cond);
Mutex_unlock(mutex);




’ondition variables for in producer-
consumer problem with unbounded buffer

Producer deposits data in a buffer for others to consume

Producer | Consumer A

ihilihix

Buffer quene

Producer2 Consumer B




First version for consumer-producer problem
with unbounded buffer

* Int avail=0; //# of data items available for consumption
« Consumer thread:

= Producer thread:

Produce next item; avail = avalil+1,
//notify an item Is available




’ Condition Variables for consumer-producer
problem with unbounded buffer

« Int avail=0; // # of data items available for consumption

« Pthread mutex m and condition cond,;

 Consumer thread:

multex_lock(&m)

while (avail <=0) Cond_Wait(&cond, &m);
Consume next item; avail = avail-1;
mutex_unlock(&mutex)

= Producer thread:

muteX_lock(&m);

Produce next item; availl = avail+1;
Cond_signal(&cond); //notify an item is available
muteXx_unlock(&m);




' When to use condition broadcast?

* When waking up one thread to run
IS not sufficient.

« Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.




' Running trace of malloc()/free()

 Initially 10 bytes are free.
* m() stands for malloc(). f() for free()

Thread 1:
m(10) — succ
f(10) —broadcast

m(7) — wait

Resume m(7)-walit

Time

Thread 2:
m(5) — walit

Resume m(5)-succ

f(5) —broadcast

Thread 3:

m(5) — walit

Resume m(5)-succ

m(3) —walit

Resume m(3)-succ



Issues with Threads: False Sharing,
Deadlocks, Thread-safety

Copyright © 2010, Elsevier
Inc. All rights Reserved



' Problem: False Sharing

 Occurs when two or more processors/cores access
different data in same cache line, and at least one
of them writes.

= Leads to ping-pong effect.
 Let’s assume we parallelize code with p=2:
for( 1=0; i<n; I++)
a[i] = b[i]; CPU 0 CPU 1
= Each array element takes 8 bytes
= Cache line has 64 bytes (8 numbers)




' False Sharing: Example (2 of 3)

Execute this program in two processors
for( 1=0; 1<n; 1++)
a[1] = b[1];

[0

cache line

Written by CPU 1



False Sharing: Example Two CPUs execute:

for( 1=0; 1<n; 1++)
a[1] = b[1];

0]

cache line

Written by CPU 1
\ \ |

nv data




-

Matrix-Vector Multiplication with
Pthreads

Parallel programming book by Pacheco book P.159-162



Sequential code

1 2 3 1 Ix1+2x24+3%x3 | 14 B
4 5 6 | *]| 2 = 4%x1+5%x24+6x%3 = | 32
7 8 9 3 Tx1+8«x2+9%3 50
/+* For each row of A =/
for (i = 0; 1 < m; i++) {

y[i] = 0.0;
/+ For each element of the row and each element of x =/
for (7 = 0: j < n: j++)

ylil += A[1][3]+ =x[J]:

ann | e adop—1 Yo
ann apy aln—1 X0 ¥
X1
@il ail Xy ain—1 Vi =ajxo +ai x4+ @i p—1Xn—1
Xp—1
p—1.0 | Gm—1,1 | " | 9n—1.n—1 V-1




' Block Mapping for Matrix-Vector Multiplication

e Task partitioning
For (i=0; i<m; I=i+1)
Task Si1 for Row 1
y[1]=0;
For (j=0; j<n; j=5+1)
ylil=y[1] +al1][j]*x[j]

Mapping to
mees | (@) ()] [(@) &

Thread 0 Thread 1

Task graph




Using 3 Pthreads for 6 Rows: 2 row per
— thread

Components
Thread of y

0 |yl[0], y[1] => SO0, S1
] v[2], vI[3] = S2, S3
2 | yl4], y[5] = S4,S5

Code for SO y[0] = 0.0: .
for (7 = 0: 7 < n: j++)
y[O] += A[O][J]* x[]]
Code for Si
y[i] = 0.0:
for (7 = 0; 7 < n: j++)
yli] += A[1][J]*x[]]



thread code for thread with ID rank

1-th thread calls Pth mat vect( &1)

void #Pth_mat_vect(void+ rank) { M is # of rows in this matrix A.

long my_rank = (long) rank: n 1s # of columns in this matrix A.
int i, 9: local mi1s # of rows handled by
int local m = m/thread count: this thread.
int my_first _row = my_rank#xlocal_m;
int my_last_row = (my_rank+I1)*local m — 1;
for (i = my first row: i <= my last_row; i++) {
v[ii] = 0.0;
Task Sl for (3 = 0: 3 < n: j++)

ylil += A[i]lJI=x[]]1:

h

return NULL:

|

Pth_mat_vect +/

Copyright © 2010, Elsevier
Inc. All rights Reserved



’ Impact of false sharing on performance of
matrix-vector multiplication

Matrix Dimension
8,000,000 x 8 | 8000 x 8000 | 8 x 8,000,000
Threads || Time Eff. | Time Eff. | Time EfT.
| 0.393 | 1.000 | 0.345 | 1.000 | 0.441 | 1.000
2 0217 | 0.906 | 0.188 | 0.918 | 0.300 | 0.735
4 0.139 | 0.707 | 0.115 | 0.750 | 0.388 | 0.290

Why Is performance of
8x8,000,000 matrix bad?

How to fix that?

(times are In seconds)

Copyright © 2010, Elsevier
Inc. All rights Reserved




’ Deadlock and Starvation

« Deadlock —two or more threads are waiting
Indefinitely for an event that can be only caused by
one of these waiting threads

- Starvation — indefinite blocking (in a waiting queue

forever).
B Lets and ¢ be two mutex locks:
I:)O Pl
Lock(S); Lock(Q);
Lock(Q); Lock(S);
Unlock(Q); Unlock(S);

Unlock(S); Unlock(Q);



’ Deadlock Avoidance

 Order the locks and always acquire the locks in

that order.
. .E_Iiminate circular waiting
I:)O Pl
Lock(S); Lock(S);
Lock(Q); Lock(Q);
Unlock(Q); Unlock(Q);

Unlock(S); Unlock(S);



Thread-Safety

* A block of code Is thread-safe if it can be
simultaneously executed by multiple threads without
causing problems.

« When you program your own functions, you know if
they are safe to be called by multiple threads or not.

* You may forget to check if system library functions
used are thread-safe.

= Unsafe function: strtok()from C string.h library

= Other example.
— The random number generator random in stdlib.h.
— The time conversion function localtime in time.h.



Concluding Remarks

* A thread in shared-memory programming is analogous
to a process in distributed memory programming.

= However, a thread is often lighter-weight than a full-
fledged process.

« When multiple threads access a shared resource
without controling, it may result in an error: we have a
race condition.

= A critical section is a block of code that updates a
shared resource that can only be updated by one
thread at a time

= Mutex, semaphore, condition variables
* |ssues: false sharing, deadlock, thread safety

Copyright © 2010, Elsevier
Inc. All rights Reserved



