Use of Click Data for Web Search

Tao Yang UCSB 290N

Table of Content

- Search Engine Logs
- · Eyetracking data on position bias
 - Click data for ranker training [Joachims, KDD02]
- Case study: Use of click data for search ranking [Agichtein et al, SIGIR 06]

Search Logs

Tab

Query logs recorded by search engines

le 1:	Samples of	search	engine	clickthrough	data
-------	------------	--------	--------	--------------	------

ID.	Query	URL	Rank	Time
358	facebook	http://www.facebook.com	1	2008-01-01 07:17:12
358	facebook	http://en.wikipedia.org/wiki/Facebook	3	2008-01-01 07:19:18
3968	apple iphone	http://www.apple.com/iphone/	1	2008-01-01 07:20:36

Huge amount of data: e.g. 10TB/day at Bing

1337 fiserv 2006-03-24 14:05:01 2 http://www.fiservinsurance.com
1337 fiserv 2006-03-24 14:05:01 2 http://www.fiservinsurance.com
1337 integrated real estate 2006-03-27 14:52:23 1 http://www.integratedreal.com
1337 integrated real estate 2006-03-27 14:52:23 2 http://www.integratedreal.com
1337 integrated loas ervices 2006-03-27 14:52:23 2 http://www.integratedreal.com
1337 michael keaton date of birth 2006-04-27 11:52:23 1 http://www.isls.com
1337 auto locator pennsylvania 2006-04-12 21:65:71 http://www.isls.com
1337 kentucky fried chicken 2006-04-25 16:07:14 1 http://www.isls.com
1337 kentucky fried chicken 2006-04-25 16:07:14 1 http://www.dtd.com
1337 kentucky fried chicken 2006-04-25 16:07:14 1 http://www.dtd.com
1337 kentucky fried chicken 2006-04-28 1 http://www.wamu.edu
2006 uman homepage 2006-03-01 00:46:55 2 http://www.wamu.edu
2005 uman homepage 2006-03-01 00:46:52 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 00:46:51 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 00:46:25 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:20:51 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:25 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:57 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:57 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:57 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:21:10 1 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:21 http://www.wamu.edu
2005 uman homepage 2006-03-01 21:21:21:21 http://www.wamu.edu
2005 uman homepage 2006-03-07 23:31:21 lttp://www.wamu.edu
2005 uman homepa

Query sessions and analysis Session Mission Mission Mission Query level 🚾 Click level lic lick Click A. Eye-tracking level fixation fixation fixation

Query-URL correlations:

- Query-to-pick
- Query-to-query
- · Pick-to-pick

Examples of behavior analysis with search logs

- · Query-pick (click) analysis
- · Session detection
- Classification
 - $x_1, x_2, ..., x_N \rightarrow y$
 - eg, whether the session has a commercial intent
- Sequence labeling
 - $x_1, x_2, ..., x_N \rightarrow y_1, y_2, ..., y_N$
 - · eg, segment a search sequence into missions and goals
- Prediction
 - $x_1, x_2, ..., x_{N-1} \rightarrow y_N$
- Similarity
 - Similarity(S₁, S₂)

Query-pick (click) analysis

· Search Results for "CIKM"

CIKM'09 Tutorial, Hong Kong, China

Interpret Clicks: an Example

CIKM'09 Tutorial, Hong Kong, China

Use of behavior data

· Adapt ranking to user clicks?

CIKM'09 Tutorial, Hong Kong, China

Non-trivial cases

· Tools needed for non-trivial cases

CIKM'09 Tutorial, Hong Kong, China

CIKM'09 Tutorial, Hong Kong, China

5/31/2013

12

Click Position-bias

- Higher positions receive more user attention (eye fixation) and clicks than lower positions.
- This is true even in the extreme setting where the order of positions is reversed.
 - "Clicks are informative but biased".

[Joachims+o7]

CIKM'09 Tutorial, Hong Kong, China

14

Clicks as Relative Judgments for Rank Training

• "Clicked > Skipped Above" [Joachims, KDD02]

- Preference pairs:
 #5>#2, #5>#3, #5>#4.
- Use Rank SVM to optimize the retrieval function.
- Limitation:
- Confidence of judgments
- Little implication to user modeling

CIKM'09 Tutorial, Hong Kong, China

15

Additional relation for relative relevance judgments

click > skip above last click > click above click > click earlier last click > click previous click > no-click next Web Search Ranking by Incorporating User Behavior Information Rank pages relevant for a query

•Eugene Agichtein, Eric Brill, Susan Dumais SIGIR 2006

Web Search Ranking

- Content match
 - e.g., page terms, anchor text, term weights
- Prior document quality
 - e.g., web topology, spam features
- Hundreds of parameters
- · Improve with implicit user feedback from click data

17

10

Related Work

Personalization

- Rerank results based on user's clickthrough and browsing history
- Collaborative filtering
 - Amazon, DirectHit: rank by clickthrough
- · General ranking
 - Joachims et al. [KDD 2002], Radlinski et al. [KDD 2005]: tuning ranking functions with clickthrough

18

Rich User Behavior Feature Space

- Observed and distributional features
 - Aggregate observed values over all user interactions for each query and result pair
 - Distributional features: deviations from the "expected" behavior for the query
- Represent user interactions as vectors in user behavior space
 - Presentation: what a user sees before a click
 - Clickthrough: frequency and timing of clicks
 - Browsing: what users do after a click

Ranking Features

Presentation			
ResultPosition	Position of the URL in Current ranking		
QueryTitleOverlap	Fraction of query terms in result Title		
Clickthrough			
DeliberationTime Seconds between query and first click			
ClickFrequency	Fraction of all clicks landing on page		
ClickDeviation	Deviation from expected click frequency		
Browsing			
DwellTime Result page dwell time			
DwellTimeDeviation	Deviation from expected dwell time for query		

More Presentation Features

Query-text features			
TitleOverlap	Words shared between query and title		
SummaryOverlap	Words shared between query and snippet		
QueryURLOverlap	Words shared between query and URL		
QueryDomainOverlap	Words shared between query and URL domain		
QueryLength	Number of tokens in query		
QueryNextOverlap	Fraction of words shared with next query		

More Clickthough Features

Clickthrough features			
Position	Position of the URL in Current ranking		
ClickFrequency	Number of clicks for this query, URL pair		
ClickProbability	Probability of a click for this query and URL		
ClickDeviation	Deviation from expected click probability		
IsNextClicked	1 if clicked on next position, 0 otherwise		
IsPreviousClicked	1 if clicked on previous position, 0 otherwise		
IsClickAbove	1 if there is a click above, 0 otherwise		
IsClickBelow	1 if there is click below, 0 otherwise		

Browsing features

Browsing features			
TimeOnPage	Page dwell time		
Commutations Time of the part	Cumulative time for all subsequent pages after		
CumulativeTimeOhPage	search		
TimeOnDomain	Cumulative dwell time for this domain		
TimeOnShortUrl	Cumulative time on URL prefix, no parameters		
IsFollowedLink	1 if followed link to result, 0 otherwise		
IsExactUrlMatch	0 if aggressive normalization used, 1 otherwise		
IsRedirected	1 if initial URL same as final URL, 0 otherwise		
IsPathFromSearch	1 if only followed links after query, 0 otherwise		
ClicksFromSearch	Number of hops to reach page from query		
AverageDwellTime	Average time on page for this query		
DwellTimeDeviation	Deviation from average dwell time on page		
CumulativeDeviation	Deviation from average cumulative dwell time		
DomainDeviation	Deviation from average dwell time on domain		

Training a User Behavior Model

- Map user behavior features to relevance judgements
- RankNet: Burges et al., [ICML 2005]
 - Neural Net based learning
 - Input: user behavior + relevance labels
 - Output: weights for behavior feature values
 - Used as testbed for all experiments

24

User Behavior Models for Ranking

- Use interactions from previous instances of query
 - General-purpose (not personalized)
 - Only available for queries with past user interactions
- Models:
 - Rerank, clickthrough only: reorder results by number of clicks
 - Rerank, predicted preferences (all user behavior features): reorder results by predicted preferences
 - Integrate directly into ranker: incorporate user interactions as features for the ranker

Evaluation Metrics

- · Precision at K: fraction of relevant in top K
- NDCG at K: norm. discounted cumulative gain
 - Top-ranked results most important

document was retrieved

MAP: mean average precision
 Average precision for each query: mean of the precision at K values computed after each relevant

26

Datasets

- 8 weeks of user behavior data from anonymized opt-in client instrumentation
- Millions of unique queries and interaction traces
- Random sample of 3,000 queries
 Gathered independently of user behavior
 - 1,500 train, 500 validation, 1,000 test
 - 1,500 train, 500 validation, 1,000 test
- Explicit relevance assessments for top 10 results for each query in sample

27

Methods Compared

- Content only: BM25F
 - A variation of TF-IDF model
- Full Search Engine: RN
 - Hundreds of parameters for content match and document quality
 - Tuned with RankNet
- Incorporating User Behavior
 - Clickthrough: Rerank-CT
 - · Full user behavior model predictions: Rerank-All
 - Integrate all user behavior features directly: +AII

BM25 < Rerank-CT < Rerank-All < +All

Content, User Behavior: NDCG

BM25 < Rerank-CT < Rerank-All < +All

33

Most gains are for queries with poor ranking

Conclusions

- Incorporating user behavior into web search ranking dramatically improves relevance
- Providing rich user interaction features to ranker is the most effective strategy

34

 Large improvement shown for up to 50% of test queries

Fu	0.74 0.72 0.7 0.68 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.65 0.58	gine, Us	er Behaviors	
	RN	0.270		
	RN+ALL	0.321	0.052 (19.13%)	
	BM25	0.236		
	BM25+ALL	0.292	0.056 (23.71%)	