
Indexing

•UCSB 290N.

•Mainly based on slides from the text books

of Croft/Metzler/Strohman and

Manning/Raghavan/Schutze
All slides ©Addison Wesley, 2008

Table of Content

• Inverted index with positional information

• Compression

• Distributed indexing

Indexing Process

Indexes

• Indexes are data structures designed to make search

faster

• Most common data structure is inverted index

 general name for a class of structures

 “inverted” because documents are associated with

words, rather than words with documents

– similar to a concordance

• What is a reasonable abstract model for ranking?

 enables discussion of indexes without details of

retrieval model

Simple Model of Ranking

More Concrete Model

Inverted Index

• Each index term is associated with an inverted list

 Contains lists of documents, or lists of word

occurrences in documents, and other information

 Each entry is called a posting

 The part of the posting that refers to a specific

document or location is called a pointer

 Each document in the collection is given a unique

number

 Lists are usually document-ordered (sorted by

document number)

Example “Collection”

Simple Inverted

Index

Inverted Index

with counts

• supports better

ranking algorithms

Positional indexes

• Store, for each term, entries of the form:

<number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Positional index example

• this expands postings storage substantially

<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Inverted Index

with positions

• supports

proximity matches

Proximity Matches

• Matching phrases or words within a window

explicitly or implicitly.

 e.g., "tropical fish", or “find tropical within 5

words of fish”

• Word positions in inverted lists make these types

of query features efficient

 e.g.,

Fields and Extents

• Document structure is useful in search

 field restrictions

– e.g., date, from:, etc.

 some fields more important

– e.g., title

• Options:

 separate inverted lists for each field type

 add information about fields to postings

 use extent lists to mark special areas in a document

Extent Lists

• An extent is a contiguous region of a document

 represent extents using word positions

 inverted list records all extents for a given field type

 e.g.,

extent list

Other Issues

• Precomputed scores in inverted list

 e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total

feature value for document 1

 improves speed but reduces flexibility

• Score-ordered lists

 query processing engine can focus only on the top

part of each inverted list, where the highest-scoring

documents are recorded

 very efficient for single-word queries

Issue with data size: Example

• Number of docs = n = 40M

• Number of terms = m = 1M

• Use Zipf to estimate number of postings entries:

 n + n/2 + n/3 + …. + n/m ~ n ln m = 560M entries

 16-byte (4+8+4) records (term, doc, freq).

• 9GB

• No positional info yet
Check for

yourself

Positional index size

• Need an entry for each occurrence, not just once

per document

• Index size depends on average document size

 Average web page has <1000 terms

 SEC filings, PDF files, … easily 100,000 terms

• Consider a term with frequency 0.1%

100 1 100,000

1 1 1000

Positional postings Postings Document size

Compression

• Inverted lists are very large

 Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory

space

 Typically have to decompress lists to use them

 Best compression techniques have good

compression ratios and are easy to decompress

• Lossless compression – no information lost

Rules of thumb

• Positional index size factor of 2-4 over non-

positional index

• Positional index size 35-50% of volume of original

text

• Caveat: all of this holds for “English-like”

languages

Compression

• Basic idea: Common data elements use short codes

while uncommon data elements use longer codes

 Example: coding numbers

– number sequence: 0, 1, 0, 2,0,3,0

– possible encoding:

– encode 0 using a single 0:

– only 10 bits, but...

Compression Example

• Ambiguous encoding – not clear how to decode

– another decoding:

– which represents:

– use unambiguous code:

– which gives:

Delta Encoding

• Word count data is good candidate for compression

 many small numbers and few larger numbers

 encode small numbers with small codes

• Document numbers are less predictable

 but differences between numbers in an ordered list

are smaller and more predictable

• Delta encoding:

 encoding differences between document numbers (d-

gaps)

Delta Encoding

• Inverted list (without counts)

• Differences between adjacent numbers

• Differences for a high-frequency word are easier to

compress, e.g.,

• Differences for a low-frequency word are large, e.g.,

Bit-Aligned Codes

• Breaks between encoded numbers can occur after

any bit position

• Unary code

 Encode k by k 1s followed by 0

 0 at end makes code unambiguous

Unary and Binary Codes

• Unary is very efficient for small numbers such as 0

and 1, but quickly becomes very expensive

 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary

• Binary is more efficient for large numbers, but it may

be ambiguous

Elias-γ Code

• To encode a number k, compute

– kd is number of binary digits, encoded in unary

Elias-δ Code

• Elias-γ code uses no more bits than unary, many

fewer for k > 2

 1023 takes 19 bits instead of 1024 bits using unary

• In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use Elias-δ

code

 Instead of encoding kd in unary, we encode kd + 1

using Elias-γ

 Takes approximately 2 log2 log2 k + log2 k bits

Elias-δ Code

• Split kd into:

 encode kdd in unary, kdr in binary, and kr in binary

Byte-Aligned Codes

• Variable-length bit encodings can be a problem on

processors that process bytes

• v-byte is a popular byte-aligned code

 Similar to Unicode UTF-8

• Shortest v-byte code is 1 byte

• Numbers are 1 to 4 bytes, with high bit 1 in the last

byte, 0 otherwise

V-Byte Encoding

V-Byte Encoder

V-Byte Decoder

Compression Example

• Consider invert list with positions:

• Delta encode document numbers and positions:

• Compress using v-byte:

Skip pointers for faster merging of postings

Basic merge

• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)

operations.

Can we do better?

Yes, if index isn’t changing too fast.

Augment postings with skip pointers (at

indexing time)

• Why?

• To skip postings that will not be part of the

search results.

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21

31 8

16 128

Query processing with skip pointers

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21

31 8

16 128

Suppose we’ve stepped through the lists until we process 8 on

each list.

When we get to 16 on the top list, we see that its

successor is 32.

But the skip successor of 8 on the lower list is 31, so

we can skip ahead past the intervening postings.

Skip Pointers

• A skip pointer (d, p) contains a document number d

and a byte (or bit) position p

 Means there is an inverted list posting that starts at

position p, and the posting before it was for

document d

skip pointers
Inverted list

Skip Pointers

• Example

 Inverted list

 D-gaps

 Skip pointers

Where do we place skips?

• Tradeoff:

 More skips shorter skip spans more likely to

skip. But lots of comparisons to skip pointers.

 Fewer skips few pointer comparison, but then

long skip spans few successful skips.

Placing skips

• Simple heuristic: for postings of length L, use L

evenly-spaced skip pointers.

• This ignores the distribution of query terms.

• Easy if the index is relatively static; harder if L

keeps changing because of updates.

Auxiliary Structures

• Inverted lists usually stored together in a single file

for efficiency

 Inverted file

• Vocabulary or lexicon

 Contains a lookup table from index terms to the byte

offset of the inverted list in the inverted file

 Either hash table in memory or B-tree for larger

vocabularies

• Term statistics stored at start of inverted lists

• Collection statistics stored in separate file

Distributed Indexing

• Distributed processing driven by need to index and

analyze huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather

than larger, more expensive machines

• MapReduce is a distributed programming tool

designed for indexing and analysis tasks

MapReduce

• Distributed programming framework that focuses on

data placement and distribution

• Mapper

 Generally, transforms a list of items into another list of

items of the same length

• Reducer

 Transforms a list of items into a single item

 Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of

machines

MapReduce

MapReduce

• Basic process

 Map stage which transforms data records into pairs,

each with a key and a value

 Shuffle uses a hash function so that all pairs with the

same key end up next to each other and on the same

machine

 Reduce stage processes records in batches, where

all pairs with the same key are processed at the same

time

• Idempotence of Mapper and Reducer provides fault

tolerance

 multiple operations on same input gives same output

Indexing Example

