Learning Ensembles

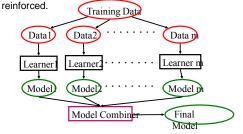
Tao Yang, 290N UCSB, 2013

Outlines

- Learning Assembles
- Random Forest
- Adaboost

Learning Ensembles

- · Learn multiple classifiers separately
- Combine decisions (e.g. using weighted voting)
- When combing multiple decisions, random errors cancel each other out, correct decisions are



Homogenous Ensembles Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models. Data1 ≠ Data2 ≠ ... ≠ Data m Learner1 = Learner2 = ... = Learner m Methods for changing training data: Bagging: Resample training data Boosting: Reweight training data DECORATE: Add additional artificial training data

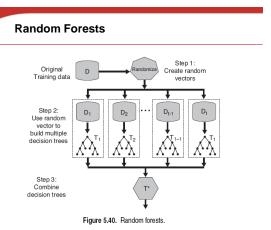
Bagging

- Create ensembles by repeatedly randomly resampling the training data (Brieman, 1996).
- Given a training set of size n, create m sample sets
 Each bootstrap sample set will on average contain 63.2% of the unique training examples, the rest are replicates.
- Combine the *m* resulting models using majority vote.
- Decreases error by decreasing the variance in the results due to <u>unstable learners</u>, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.

5

Random Forests

- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Each tree is grown using a bootstrap sample of training data
 - At each node, best split is chosen from random sample of *m* variables instead of all variables M.
- m is held constant during the forest growing
- · Each tree is grown to the largest extent possible
- Bagging using decision trees is a special case of random forests when m=M $\,$



Random Forest Algorithm

- Good accuracy without over-fitting
- Fast algorithm (can be faster than growing/pruning a single tree); easily parallelized
- Handle high dimensional data without much problem

Boosting: AdaBoost

- Yoav Freund and Robert E. Schapire. A decisiontheoretic generalization of on-line
- learning and an application to boosting. Journal of Computer and System Sciences,

55(1):119-139, August 1997.

Simple with theoretical foundation

Adaboost - Adaptive Boosting

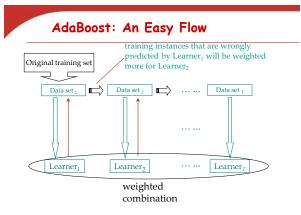
- · Use training set re-weighting
 - Each training sample uses a weight to determine the probability of being selected for a training set.
- AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of "simple" "weak" classifier
 T

$$f(x) = \sum_{t=1}^{r} \alpha_t h_t(x)$$

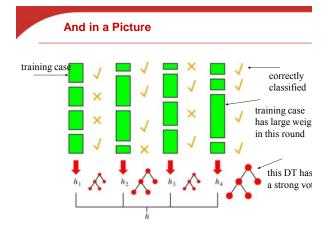
10

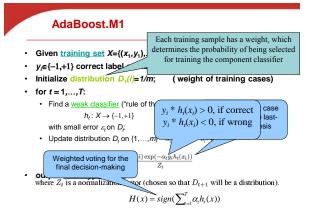
12

 Final classification based on weighted sum of weak classifiers

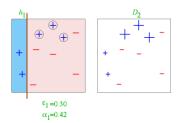


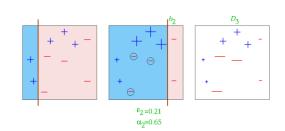
- + $h_t(x)$... "weak" or basis classifier
- * $H(x) = sign(f(x)) \dots$ "strong" or final classifier
- Weak Classifier: < 50% error over any distribution
- Strong Classifier: thresholded linear combination
 of weak classifier outputs

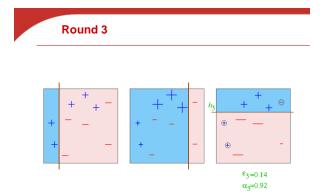


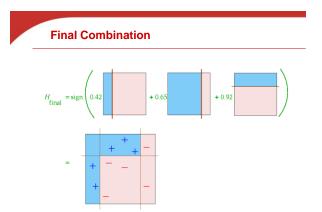


Reweighting	Toy Example
Effect on the training set	
Reweighting formula:	D_1
$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ $\mathbf{y}^* \mathbf{h}(\mathbf{x}) = 1$	++++
$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \\ y^* \mathbf{h}(\mathbf{x}) = -1 \end{cases}$	+ - + -
⇒ Increase (decrease) weight of wrongly (correctly) classified examples	









Pros and cons of AdaBoost

Advantages

- Very simple to implement
- Does feature selection resulting in relatively simple classifier

21

- Fairly good generalization
- Disadvantages
 - Suboptimal solution
 - Sensitive to noisy data and outliers

References

- rt. ect Pattern Classificatio
- Freund "An adaptive version of the boost by majority algorithm"
- Freund "Experiments with a new boosting algorithm"
- d, Schapire "A decision-theoretic generalization of on-line learning and an application to boosting"
- etc "Additive Logistic Regression: A Statistical View of Boosting"
- Jin, Liu, etc (CMU) "A New Boosting Algorithm Using Input-Dependent Regularizer
- Li, Zhang, etc "Floatboost Learning for Classification"
- Opitz, Maclin "Popular Ensemble Methods: An Empirical Study
- Ratsch, Warmuth "Efficient Margin Maximization with Boosting"
- Schapire, Freund, etc "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods

22

- Schapire, Singer "Improved Boosting Algorithms Using Confidence-Weighted Predictions"
- Schapire "The Boosting Approach to Machine Learning: An overview"
- Zhang, Li, etc "Multi-view Face Detection with Floatboost"

AdaBoost: Training Error Analysis

- $f(x) = \sum_{t=1}^{T} \frac{\mathsf{Equivalent}}{\alpha_t h_t(x)}$ $H(x) = \operatorname{sign}(f(x))$ Suppose if $H(x_i) \neq y_i$ then $y_i f(x_i) \leq 0$ implying that $\exp(-y_i f(x_i)) \geq 1$ Thus,
- $\llbracket H(x_i) \neq y_i \rrbracket \leq \exp(-y_i f(x_i)).$ Therefore, training error is:
- $\frac{1}{m} |\{i: H(x_i) \neq y_i\}| \leq \frac{1}{r}$ $D_{T+1}(i) = \frac{\exp\left(-\sum_t \alpha_t y_i\right)}{m \prod_t Z} |\{i: H(x_i) \neq y_i\} \text{ is a vector which i-th element is } |H(x_i) \neq y_i\}.$ $|\{i: H(x_i) \neq y_i\}| \text{ is the sum of all the element in the vector}$ As: Considering $\frac{\sum_{i=1}^{l} D_{T+1}(i) = 1, \quad \frac{1}{\sum_{i=1}^{l} \sum_{i=1}^{l} Z_i} \sum_{i=1}^{l} \left[i: H(x_i) \neq y_i \right] \leq \prod_{i=1}^{l} Z_i$

Finally:

