
1

Query Processing and Online

Architectures

•T. Yang 290N 2013

•Partially from Croft, Metzler & Strohman‘s

textbook

Content

• Query processing flow and data distribution.

• Experience with Ask.com online architecture

 Service programming with Neptune.

 Zookeeper

Query Processing

• Document-at-a-time

 Calculates complete scores for documents by

processing all term lists, one document at a time

• Term-at-a-time

 Accumulates scores for documents by processing

term lists one at a time

• Both approaches have optimization techniques

that significantly reduce time required to generate

scores

Document-At-A-Time

2

Term-At-A-Time Optimization Techniques

• Term-at-a-time uses more memory for accumulators,

data access is more efficient

• Optimization

 Read less data from inverted lists

– e.g., skip lists

– better for simple feature functions

 Calculate scores for fewer documents

 Threshold-based elimination

– Avoid to select documents with a low score when high-score

documents are available.

Other Approaches

• Early termination of query processing

 ignore high-frequency word lists in term-at-a-time

 ignore documents at end of lists in doc-at-a-time

 unsafe optimization

• List ordering

 order inverted lists by quality metric (e.g., PageRank)

or by partial score

 makes unsafe (and fast) optimizations more likely to

produce good documents

Distributed Evaluation

• Basic process

 All queries sent to a coordination machine

 The coordinator then sends messages to many index

servers

 Each index server does some portion of the query

processing

 The coordinator organizes the results and returns

them to the user

• Two main approaches

 Document distribution

– by far the most popular

 Term distribution

Index server
Index server
Index server
Index server

coordinator

3

Distributed Evaluation

• Document distribution

 each index server acts as a search engine for a small

fraction of the total collection

 A coordinator sends a copy of the query to each of

the index servers, each of which returns the top-k

results

 results are merged into a single ranked list by the

coordinator

Distributed Evaluation

• Term distribution

 Single index is built for the whole cluster of machines

 Each inverted list in that index is then assigned to one

index server

– in most cases the data to process a query is not stored on a

single machine

 One of the index servers is chosen to process the

query

– usually the one holding the longest inverted list

 Other index servers send information to that server

 Final results sent to director

Caching

• Query distributions similar to Zipf

 Over 50% of queries repeat cache hit

 Some hot queries are very popular.

• Caching can significantly improve response time

 Cache popular query results

 Cache common inverted lists

• Inverted list caching can help with unique queries

• Cache must be refreshed to prevent stale data

Open-Source Search Engines

• Apache Solr: http://lucene.apache.org/solr/

 full-text search with highlighting, faceted search,

dynamic clustering, database integration, rich

document (e.g., Word, PDF) handling, and

geospatial search

 distributed search and index replication.

 Based on Java Apache Lucene search.

• Constellio: http://www.constellio.com/

Open-source enterprise level search based on Solr.

• Zoie: sna-projects.com/zoie/ – Real time search

indexing built ontop of Lucene.

http://lucene.apache.org/solr/
http://www.constellio.com/
http://sna-projects.com/zoie/
http://sna-projects.com/zoie/
http://sna-projects.com/zoie/
http://sna-projects.com/zoie/
http://sna-projects.com/zoie/

4

Open-Source Search Engines

• Lemur http://www.lemurproject.org/

 C/C++, running on Linux/Mac and windows.

 Indri search engine by U. Mass/CMU.

 Parses PDF, HTML, XML, and TREC documents.

Word and PowerPoint parsing (Windows only).

 UTF-8

• Sphinx: http://sphinxsearch.com/

 Cross platform open source search server written

in C++

 search across various systems, including database

servers and NoSQL storage and flat files.

• Xapian: xapian.org/ – search library built on C++

Fee-based Search Solutions

• Google SiteSearch http://www.google.com/sitesearch/

 Site search is aimed primarily at websites, and not

for an intranet.

 It is a fully hosted solution

 Pricing for site search is on a query basis per year.

Starting at $100 for 20,000 queries a year

• Google Mini

 a server based solutions. Once deployed,

Mini crawls your Web sites and file systems /

internal databases,

 Costs start at $1,995 (direct) plus a $995 yearly fee

after the first year for indexing of 50,000 documents,

and scales upwards

4/22/2013 15

Ask.com Search Engine

Neptune

Document

Abstract

Cache

Frontend

Client queries
Traffic load balancer

Cache
Cache
Cache

Frontend Frontend Frontend

 Aggregator

 Retriever

Document

Abstract
Document

Abstract
Document

description

Ranking
Ranking
Ranking
Ranking
Ranking Graph

Server

PageInfo
Suggestion

XML

Cache

PageInfo
Aggregator

PageInfo (HID)

XML

Cache
XML

Cache

4/22/2013

Research Presentation
16

Frontends and Cache

• Front-ends
 Receive web queries.

 Direct queries through XML cache, compressed result
cache, database retriever aggregators, page
clustering/ranking,

 Then present results to clients (XML).

• XML cache :
 Save previously-queried search results (dynamic Web

content).

 Use these results to answer new queries. Speedup result
computation by avoiding content regeneration

• Result cache
 Contain all matched URLs for a query.

 Given a query, find desired part of saved results. Frontends
need to fetch description for each URL to compose the final
XML result.

http://www.lemurproject.org/
http://sphinxsearch.com/
http://sna-projects.com/zoie/
http://xapian.org/
http://www.google.com/sitesearch/

5

4/22/2013 17

Index Matching and Ranking

• Retriever aggregators (Index match coordinator)

 Gather results from online database partitions.

 Select proper partitions for different customers.

• Index database retrievers

 Locate pages relevant to query keywords.

 Select popular and relevant pages first.

 Database can be divided as many content units

• Ranking server

 Classify pages into topics & Rank pages

• Snippet aggregators

 Combine descriptions of URLs from different

description servers.

• Dynamic snippet servers

 Extract proper description for a given URL.

4/22/2013 18

Programming Challenges for Online

Services

• Challenges/requirements for online services:

 Data intensive, requiring large-scale clusters.

 Incremental scalability.

 724 availability.

 Resource management, QoS for load spikes.

• Fault Tolerance:

 Operation errors

 Software bugs

 Hardware failures

• Lack of programming support for reliable/scalable
online network services and applications.

4/22/2013 19

The Neptune Clustering Middleware

• Neptune: Clustering middleware for
aggregating and replicating application
modules with persistent data.

• A simple and flexible programming model to
shield complexity of service discovery, load
scheduling, consistency, and failover
management

• www.cs.ucsb.edu/projects/neptune for code,
papers, documents.
 K. Shen, et. al, USENIX Symposium on Internet

Technologies and Systems, 2001

4/22/2013
20

Example: a Neptune Clustered Service:

Index match service

Snippet
generation

Index
match

Front-end
Web Servers

Ranking

Local-
area

Network

HTTP

server

Neptune Client

Neptune

server

Client

Neptune

server

App

http://www.cs.ucsb.edu/projects/neptune

6

4/22/2013 21

Neptune architecture for cluster-based

services

• Symmetric and decentralized:

 Each node can host multiple services, acting as a service

provider (Server)

 Each node can also subscribe internal services from other

nodes, acting as a consumer (Client)

– Advantage: Support multi-tier or nested service architecture

• Neptune components at each node:

 Application service handling subsystem.

 Load balancing subsystem.

 Service availability subsystem.

Client requests
Service provider

4/22/2013 22

Inside a Neptune Server Node

(Symmetry and Decentralization)

N
etw

o
rk

 to
 th

e rest o
f th

e clu
ster

Service

Access Point

Service

Providers

Service Runtime

 Service Handling

Module

Service

Availability

Directory

Service

Availability

Publishing

Service

Availability

Subsystem

Polling

Agent

Load

Index Server

Service

Load-balancing

Subsystem

Service

Consumers

4/22/2013 23

Availability and Load Balancing

• Availability subsystem:

 Announcement once per second through IP
multicast;

 Availability info kept as soft state, expiring in 5
seconds;

 Service availability directory kept in shared-
memory for efficient local lookup.

• Load-balancing subsystem:

 Challenging: medium/fine-grained requests.

 Random polling with sampling.

 Discarding slow-responding polls

4/22/2013 24

Programming Model in Neptune

• Request-driven processing model: programmers

specify service methods to process each request.

• Application-level concurrency: Each service

provider uses a thread or a process to handle a new

request and respond.

Service

method

Data

Requests

RUNTIME

7

4/22/2013 25

Cluster-level Parallelism/Redudancy

• Large data sets can be partitioned and replicated.

• SPMD model (single program/multiple data).

• Transparent service access: Neptune provides

runtime modules for service location and consistency.

Service

method

Request

Provider

module

Provider

module
…

Service cluster

Clustering by

Neptune

Data

4/22/2013 26

Service invocation from consumers to

service providers

• Request/response messages:

 Consumer side: NeptuneCall(service_name, partition_ID,

service_method, request_msg, response_msg);

 Provider side: “service_method” is a library function.

Service_method(partitionID, request_msg, result_msg);

 Parallel invocation with aggregation

• Stream-based communication:Neptune sets up a bi-

directional stream between a consumer and a service provider.

Application invocation uses it for socket communication.

Consumer

Neptune

Consumer

module

Neptune

Provider

module

Service

provider

4/22/2013 27

Code Example of Consumer Program

Hp=NeptuneInitClt(LogFile);

NeptuneConnect (Hp, “IndexMatch”, 0,

Neptune_MODE_READ, “IndexMatchSvc”, &fd, NULL);

…Then use fd to read/write data…

NeptuneFinalClt(Hp);

4/22/2013 28

Example of server-side API with stream-

based communication

• Server-side functions

Void IndexMatchInit(Handle)

 Initialization routine.

Void IndexMatchFinal(Handle)

 Final processing routine.

Void IndexMatchSvc(Handle, parititionID, ConnSd)

 Processing routine for each indexMatch request.

8

4/22/2013 29

Publishing Index Search Service

• Example of configuration file

 [IndexMatch]

 SVC_DLL = /export/home/neptune/IndexTier2.so

 LOCAL_PARTITION = 0,4 # Partitions hosted

 INITPROC=IndexMatchInit

 FINALPROC=IndexMatchFinal

 STREAMPROC=IndexMatchSvc

4/22/2013 30

ZooKeeper

• Coordinating distributed systems as “zoo” management

 http://zookeeper.apache.org

• Open source high-performance coordination service for

distributed applications

 Naming

 Configuration management

 Synchronization

 Group services

